

B.Sc. in Chemical Engineering Chemical Engineering Program Program Specification According to Regulation 2019

Administrative Information

Program title	Chemical Engineering, CHE
Program type	Single
Award/Degree	B.Sc. Degree
Dept. (s) responsible	Chemical Engineering
Coordinator	Head of Chemical Engineering department
	Associate prof. Dr. Ghada kadry
Assistant Co-ordinator:	Dr. Mostafa Hassanein Hussein
External evaluator	Prof. Dr. Mai Mohammed Kamal Fouad
Date of the most recent approval	Department Council on
of program specification	Academic Council on

Content

General	2
A. Basic Information	3
B. Professional Information	3-16
1- The program Aims	3-4
2- The attributes of chemical engineer	1.6
3- Learning Outcomes (LO's) Chemical Engineering	4-6
4- Academic Standards	6
5- Benchmark Reference	6
6- Program Structure and Contents	7-13
7- Courses contributing to the program	14
8- Program Admission Requirements	14
9- Regulations for Progression and Program Completion	14
10- Student Assessment (Methods and rules for student assessment)	15
11- Program Evaluation	16
Appendix 1: Matrices	17-52
Table (1) Analysis of Program mission	18
Table (2) Matrix of Program mission and Institute mission	19
Table (3) Matrix of Program mission and Program aims	20
Table (4) Matrix of Program mission and the attributes of chemical engineer	21
Table (5) Matrix of Programs Aims and The attributes of chemical engineer	23
Table (6) Matrix of (LOs) for Chemical Engineering program and Programs Aims	25
Table (7) Matrix of (LOs) for Chemical Engineering program and attributes of chemical engineering	33
Table (8) Matrix of National Reference Standards (NARS 2018) and (LOs) for Chemical Engineering	40
Matrix 1- Curriculum Mapping Matrix (Appendix 1)	43
Matrix 2 Mapping of NARS to the program LOs (Matrix)	44
Matrix 3 Mapping of Program mission and Program aims (Matrix)	45
Matrix 4 Mapping of Program mission and Chemical Engineering program LOs (Matrix)	46
Matrix 5 Mapping of Program mission and Attributes of Chemical Engineer (matrix)	47
Matrix 6 Mapping of Program Aims and Attributes of Chemical Engineer (matrix)	48
Matrix 7 Mapping of Program Aims and Chemical Engineering program LOs (matrix)	49
Matrix 8 Mapping of Attributes of Chemical Engineer and the program LOs (matrix)	50
Matrix 9 Mapping of Teaching and learning methods and the program LOs (matrix)	51
Matrix 10 Mapping of Assessment methods and the program LOs (matrix)	52

Chemical Engineering Program Specification

(New curriculum of academic year 2024/2025)

A. Basic Information

1. **Program Title:** Bachelor's degree of Chemical Engineering.

2. Program Type: Single

Department responsibility: Chemical Engineering Department.

Date of program regulation approval: 2019

Date of program specification approval: 2024/2025

Staff Members

Chemical Engineering Program is taught by 24 highly qualified staff members. (Appendix 4).

No. of staff members	Full- time	Part-time
Engineering Courses	6	1
Basic Sciences Courses	17	-

B. Professional Information

Preamble

Chemical Engineering is one of the most challenging and rewarding careers one can choose. One of the hallmarks of a chemical engineering education is flexibility. Students study chemical processes at the molecular level and the chemical plant level and gain an education deeply grounded in mathematics, chemistry, physics, biology, and materials science . . . not to mention engineering itself.

Technical knowledge alone is not enough, and chemical engineers must also understand engineering economics, project management, and global business practices.

The chemical industry is one of the major driving forces of our nation's economy. From innovations and continual improvements made by chemical engineers flow every new medicine, electronic device and high-performance material, plus new technologies for cleaning the environment and feeding and clothing the world's population.

An education in chemical engineering can serve as the foundation for a wide variety of careers. Many, but not most, chemical engineering jobs can be found in the chemical process industry, including oil and chemical companies, but other large employers of chemical engineers include organizations involved with food and consumer products, semiconductors, energy and environmental engineering, pharmaceuticals, and cosmetics.

Chemical engineers typically work to design new processes, improve existing processes, reduce manufacturing costs, research, and develop new processes and products, and manage corporate assets.

1. The Program Aims

The mission of the Chemical Engineering program is to harness the capabilities and efforts to build, train and qualify chemical engineer professionally to conduct research and provide advisory services specialized in Chemical Engineering and science applications.

The Chemical Engineering programmer aims are providing future engineers with appropriate theoretical knowledge and technical skills to respond to the professional market demands in the field of Chemical Engineering. The program is identified to satisfy graduates' and stakeholders' needs and to fulfil the program mission.

The graduates of Chemical Engineering program should be able to:

- 1.1 Apply knowledge and advanced technical skills in chemical engineering.
- 1.2 Utilize and manage resources creatively through effective analysis and interpretation skill.
- 1.3 Recognize the potential and applicability of computer-based methods in chemical engineering design.
- 1.4 Address the issues of process dynamics and control in plant operation.
- 1.5 Plan and execute research work, evaluate outcomes and draw conclusions.
- 1.6 Identify and control the impact that chemical engineering has on society from an environmental, economic, social and cultural point of view.

2. The Attributes of Chemical Engineer

The Chemical Engineering Program adopted the NARS attributes for Engineering and Chemical Engineering. The graduates of Chemical Engineering should have the ability to:

- 2.1 Master a wide spectrum of engineering knowledge and specialized skills and can apply acquired knowledge using theories and abstract thinking in real life situations.
- 2.2 Apply analytic critical and systemic thinking to identify, diagnose and solve engineering problems with a wide range of complexity and variation.
- 2.3 Behave professionally and adhere to engineering ethics and standards.
- 2.4 Work in and lead a heterogeneous team of professionals from different engineering specialties and assume responsibility for own and team performance.
- 2.5 Recognize his/her role in promoting the engineering field and contribute in the development of the profession and the community.
- 2.6 Value the importance of the environment, both physical and natural, and work to promote sustainability principles.
- 2.7 Use techniques, skills and modern engineering tools necessary for engineering practice.
- 2.8 Assume full responsibility for own learning and self-development, engage in lifelong learning and demonstrate the capacity to engage in post- graduate and research studies.
- 2.9 Communicate effectively using different modes, tools and languages with various audiences; to deal with academic/professional challenges in a critical and creative manner.
- 2.10 Demonstrate leadership qualities, business administration and entrepreneurial skills

3. Learning Outcomes (LOs) of Chemical Engineering Program:.

Learning Outcomes (LO's) Chemical Engineering

Upon successful completion of program, the graduate should be able to:

A_{1.1} Identify and formulate, engineering fundamentals, basic science, and mathematics in the field of Chemical Engineering.

 $A_{1.2}$ Follow methodologies and techniques and explain the data collection and interpretation principle in solving engineering problem.

A_{1.3} Apply engineering fundamentals, basic science, and mathematics to solve engineering problems

A_{2.1} Develop and conduct appropriate experimentation and/or simulation

 $A_{2.2}$ Analyze and interpret data, assess, and evaluate findings, draw simplified equipment flow sheets, charts, and curves, and interpret data derived from laboratory observation

A2.3 Use statistical analyses and objective engineering judgment to draw conclusions

A_{3.1} Discuss topics related to humanitarian interests and moral issues.

A_{3.2} Analyze the environmental impacts of different industries, to minimize the waste and treat the industrial facilities.

A_{3.3} Apply engineering design processes to produce cost effective solutions that meet specified needs with consideration for global, cultural, social, economic, environmental, ethical and other aspects as appropriate to the discipline and within the principles and contexts of sustainable design and development.

A_{3.4} Use Chemical Engineering IT tools and programming in design

A_{4.1} Explain the business and the management principles relevant to chemical engineering

A4.2 Utilize contemporary technologies, codes of practice and standards, quality guidelines, health and safety requirements, environmental issues, and risk management principles.

A_{5.1} Practice research techniques and methods of investigation as an inherent part of learning

A_{6.1} Plan, supervise and monitor implementation of engineering projects, taking into consideration other trades requirements.

A_{7.1} Function efficiently as an individual and as a member of multi-disciplinary and multicultural teams

A_{8.1} Write technical language and technical report

 $A_{8.2}$ Communicate effectively – graphically, verbally and in writing – with a range of audiences using contemporary tools.

A_{9.1} Use creative, innovative, and flexible thinking in problem solving and design.

A9.2 Acquire entrepreneurial and leadership skills to anticipate and respond to new situations.

 $A_{10.1}$ Acquire and apply new knowledge in deal with the fundamental problems and troubleshooting in chemical engineering plants.

A_{10.2} Practice self, lifelong and other learning strategies.

B_{1.1} Explain the essential facts, concepts, theories and the characteristics attributes of organic and inorganic reactions and its applications in the chemical process industries

B_{1.2} Use The conventional procedures of chemical analysis and characterization common engineering materials and component.

 $B_{1.3}$ Demonstrate the chemical engineering principles and design principles techniques in chemical engineering

 $\mathbf{B}_{1.4}$ Identify methods for petroleum and natural gas processing.

B_{1.5} Design a practical chemical engineering system, component or process utilizing a full range of chemical engineering principles and techniques including Mass and Energy Balance, Thermodynamics, Mass Transfer, Heat Transfer, Momentum Transfer, Kinetics of Chemical Reactions, Reactor Design, Instrumentation and Control of Chemical Processes, and Process and Plant Design.

B_{2.1} Engage in the recent technological changes and emerging fields relevant to chemical engineering.

B_{2.2} Act as a professional chemical engineer and respond to the challenging role and responsibilities.

B_{3.1} Explains basic information and methods of evaluation, good analysis, modelling and simulation of industrial processes

B_{3.2} Apply numerical modelling methods and/or computational techniques appropriate to chemical engineering.

 $B_{4.1}$ Discuss the principle of quality assurance required for system, codes and standards, the health, safety requirements and environmental issues in the Chemical Engineering field.

B_{4.2} Adopt suitable national and international standards and codes to design, operate, inspect and maintain chemical engineering systems.

C₁ Acquire insight in the development of raw material, methods of conversion into a useful product, improve the ability to select proper material of construction of equipment in industrial process
C₂ Design and operate different processing systems in the chemical process industries including petroleum refining and gas processing and assess the balance of cost, quality and effects on the environment in production operations

C₃ Apply the concepts of project economics and resources evaluation methods for design and decision making under conditions of risk and uncertainty.

4. Academic Standards

The program adopts the National Academic Reference Standards (NARS 2018) for Engineering in the General (level A) and Chemical Engineering (level B) in Specialized Competencies and ARS (level C) in highly specialized competencies as explained in tables in Appendix1. It was approved by the department council in 12/7/2021 academic council 16/8/2021. The matrices and tables of the program are shown in Appendix1 which include the following Matrices:

- The extent to which the Institute Mission matches the program Mission.
- The extent to which the program Mission matches the program Aims
- The extent to which the program Mission matches the Graduate Attributes
- The extent to which the program Aims matches the Graduate Attributes
- The extent to which the program Aims matches the program competencies
- The extent to which the Graduates Attributes matches the program competencies
- National Academic Reference Standards (NARS) with targeted learning outcomes for the LOS program
- The curriculum mapping matrix of the individual courses to the program competencies targeted for the program. This appendix was developed by the program coordinator, assistant coordinators and professional staff members, the mapping matrix shows that the program courses present balanced to the program LO's
- Analyzing the program's competencies into knowledge and skills outcomes, and they were approved by the <u>Department Council No. (4) on 12/7/2023 and the Academic</u> Council after being reviewed by the external auditor.

5. Benchmark Reference

- A brain storming was made in a meeting dated 24/3/2021 in the Chemical Engineering Department to define the program competencies (Highly specialized)
- The engineering sector and Supreme Council of Higher Education 2020
- The Egyptian NARS 2018, 2nd edition
- Preparation of matrices that demonstrate the adoption of the NARS 2018 academic reference standards:
- The reference mark C1 has been identified from the NARS 2018 standards document (Metallurgical Engineering).
- The reference mark C2 has been identified from the NARS 2018 standards document (Textile Engineering).
- The reference mark C3 has been identified from the NARS 2018 standards document (Petroleum Engineering).
- The reference marks C2 and C3 have been confirmed by the following universities:"

1. Stanford university

Undergraduate Program | Chemical Engineering (stanford.edu)

2. University of California, Berkeley

Chemical Engineering/Nuclear Engineering Joint Major < University of California, Berkeley

6. Program Structure and Contents

A. Program duration Five years including a preparatory year

B. Program Structure:

The main structure of the chemical engineering program is performed according to the Engineering, Technological, Industrial Studies Sector Committee and Standards of National Authority for Quality Assurance and Accreditation.

The chemical engineering program includes 65 courses of total 250 contact hours; these courses are classified according to the relevant sector NARS requirements to the following subject areas:

- 1. Humanities and Social Sciences
- 2. Mathematics and Basic Sciences
- 3. Basic Engineering Sciences
- 4. Applied Engineering and design
- 5. Computer Application and ICT
- 6. Projects and Practice
- 7. Selective Subjects

The following are the subjects taught during this program

prep 1st Semester

					Firs	t sem	ester					To	pic A	rea			
		1	Teachin	g Hour	s		Markii	ıg	(Sc.				×	ą	يو	
Code	Course Name	Lectures	Tutorial hour	Practical hour	Total hour	Written Exam	Year work	Practical/ oral Exam	Exam Time (hr)	Hum. & Soc. S	Math. & B. Sc.	B. Eng. Sc.	App. Eng. & Des.	Comp. App. 8 ICT	Proj. & Practice	Selective course	Total marks
PHM 011	Mathematics (1)	2	2	-	4	90	60	-	2		4						150
PHM 013	Physics(1)	2	1	2	5	90	30	30	2		5						150
PHM 015	Mechanics (1)	2	2	•	4	90	60	-	2		4						150
ARC 011	Engineering Drawing& Projection (1)	1	2	-	3	60	40	-	2			3					100
CHE 011	Chemistry	2	1	1	4	60	20	20	2		4						100
HUM 013	ICDL	1	-	2	3	30	10	10	2					3			50
HUM 011	Technical English Language (1)	1	-	1	2	30	10	10	1	2							50
		11	8	6						2	17	3		3			750
Total hour	of first semester		25				T	otal mai	·ks								730

prep 2nd Semester

				Se	cond	semes	ster					Sul	bject .	Area			
		Т	eachin	g Houi	'S	N	Aarkin	g)	Sc.] .			2	e,	e	
Code	Course Name	Lectures	Tutorial hour	Practical hour	Total hour	Written Exam	Year work	Practical/oral Exam	Exam Time (hr)	Hum. & Soc. S	Math. & B. Sc.	B. Eng. Sc.	App. Eng. & Des.	Comp. App. & ICT	Proj. & Practice	Selective course	Total marks
PHM 012	Mathematics (2)	2	2	-	4	90	60	-	2		4						150
PHM 014	Physics(2)	2	1	2	5	90	30	30	2		5						150
PHM 016	Mechanics (2)	2	2	-	4	90	60	-	2		4						150
ARC 012	Engineering Drawing& Projection (2)	1	2	2	5	60	20	20	2					5			100
PHM 017	Production Technology	1	-	2	3	45	15	15	2			3					75
HUM 014	History of engineering and technology	2	ı	-	2	50	25	-	2	2							75
HUM 012	Technical English Language (2)	1	-	1	2	30	10	10	1	2							50
		11	7	7						4	13	3		5			750
Total hour of	second semester		25				Tota	ıl mar	ks								730

 $[*]mathematics~(1)\&(2), Physics(1)\&(2), Mechanics(1)\&~(2) \ Engineering~Drawing\&~Projection(1)\&~(2) are~continuous~subject$

First Year / 1st Semester

	car / 1 Schrester			I	First s	semes	ter					Sul	oject A	rea			
မ			Teachin	g Hours			Marki	ng	(hr)			.:	જ	d.			T-4-1
Code	Course Name	Lectures	Tutorial hours	Practical hours	Total hours	Written Exam	Year work	Practical/ oral Exam	Exam Time (Hum. & Soc. Sc.	Math. & B. Sc.	B. Eng. Sc.	App. Eng. d	Comp. App. & ICT	Proj. & Practice	Selective course	Total marks
CHE 121	Inorganic Chemistry	2	-	2	4	75	30	20	2			4					125
CHE 131	Introduction to Chemical Engineering and Petroleum Processing	2	2	1	4	90	35	-	2			4					125
PHM 171	Mathematics (3)	2	2	-	4	90	35	-	2		4						125
PHM 173	Physics(3)	2	1	1	4	75	30	20	2		4						125
CHE 151	Machine Design	2	1	-	3	70	30	-	2				3				100
HUM 171	Selective course Humanities (1)	2	1	-	3	50	25	-	1	3							75
HUM 172	Technical reports	2	-	-	2	50	25	1	1	2							75
Total hou	Total hour of first semester 24			3			To	tal marks		5	8	8	3				750

<u>First Year / 2nd Semester</u>

				Sec	ond s	emest	er					Sub	ject A	rea			
		Te	eaching	Hours		N	Aarkin	g	r)	Sc.				&	;e	je je	
Code	Course Name	Lectures	Tutorial	Practical hours	Total hours	Written Exam	Year work	Practical/oral Exam	Exam Time (hr)	Hum. & Soc. S	Math. & B. Sc.	B. Eng. Sc.	App. Eng. & Des.		Proj. & Practice	Selective course	Total marks
CHE 122	Organic Chemistry (1)	2	-	2	4	75	30	20	2			4					125
CHE 123	Inorganic and Analytical Chemistry	2	-	2	4	75	30	20	2			4					125
PHM 172	Mathematics (4)	2	2	-	4	90	35	-	2		4						125
PHM 174	Mechanics (3)	2	2	-	4	70	30	-	2		4						100
CVE 112	Principles of Construction Engineering	2	1	-	3	70	30	-	2		3						100
EPM 116	Electrical and Electronic Engineering	2	1	-	3	70	30	-	2		3						100
HUM 173	Selective Courses Humanities (2)	2	1	-	3	50	25	-	1	3	·			·			75
		14	7	4						3	14	8					750
Total h	Total hour of second semester		25				Tota	al mark	s								

 $^{^{\}ast}$ Inorganic Chemistry & Inorganic and Analytical Chemistry are continuous subjects * Mathematics (3) &(4) are continuous subjects

Second Year / 1st Semester

500010	Teal / T Semester			I	First s	emester						Sub	ject A	rea			
		Т	eachin	g Hour	s	N	Iarkin	g	(hr)	Sc.				*	e) a	m 1
Code	Course Name	Lectures	Tutorial hours	Practical hours	Total hours	Written Exam	Year work	Practical/ oral Exam	Exam Time (Hum. & Soc. S	Math. & B. Sc.	B. Eng. Sc.	App. Eng. & Des.	p.	Proj. & Practice	Selective course	Total mark s
CHE 221	Organic Chemistry (2)	2		2	4	75	30	20	2			4					125
CHE 231	Momentum Transfer	3	3	-	6	110	65	-	2			6					175
CHE 222	Physical Chemistry and Thermodynamics	2	1	2	5	90	40	20	2			5					150
CHE 232	Fundamentals of Mass and Energy Balance	2	3	-	5	100	50	-	2			4		1			150
HUM 271	Humanities (3)	2	1	-	3	50	25	-	1	3							75
HUM 272	Research and Analysis Skills	2	1	-	3	50	25	-	1	3							75
		13	9	4						8		19		1			
	l hour of first semester		26				Tota	l mark	S								750

Second Year / 2ndSemester

				S	Second	l seme	ester					Sub	ject A	rea			
		Т	`eachin	g Hour	rs.		Mark	ing	ur)	ပ] .				e .	يو [
Code	Course Name	Lectures	Tutorial hours	Practical hours	Total hours	Written Exam	Year work	Practical/ oral Exam	Exam Time (hr)	Hum. & Soc. Sc.	Math. & B. Sc.	B. Eng. Sc.	App. Eng. & Des.	Comp. App. & ICT	Proj. & Practice	Selective course	Total marks
CHE 223	Physical Chemistry and Phase Equilibrium	2	1	2	5	90	40	20	2			5					150
CHE 224	Organic and Biochemistry	2	1	2	4	75	30	20	2			4					125
PHM 271	Probability and Statistics	1	1	-	2	70	30	-	2		2						100
CHE 233	Principles of Mechanical Engineering	2	1	-	3	70	30	-	2		3						100
CHE 2XX ₁	Selective Courses (1)	2	2	-	4	90	35	-	2							4	125
HUM 273	Humanities (4)	2	1	-	3	50	25	-	1	3							75
HUM 274	Environmental Evaluation Impacts	2	1	-	3	50	25	-	1	3							75
		13	7	4						6	5	9				4	750
Total hou	ır of second semester		24				To	tal marks									730

Third Year / 1st Semester

	Year / 1st Semester				First :	semeste	er					Sı	ıbject .	Area	ļ		
		T	eachin	g Hou	rs		Marki	ng	r)	Sc.				2	şe	ie	
Code	Course Name	Lectures	Tutorial	Practical bours	Total hours	Written Exam	Year work	Practical/ oral Exam	Exam Time (hr)	Hum. & Soc. S	Math. & B. Sc.	B. Eng. Sc.	App. Eng. & Des.	Comp. App. &	Proj. & Practice	Selective course	Total marks
CHE 371	Mechanical Unit Operations	2	3	-	5	90	35	-	2				5				125
CHE 361	Organic Chemical Industries	2	-	2	4	75	30	20	2				2		2		125
CHE 362	Inorganic Chemical Industries	2	-	2	4	90	40	20	2				2		2		150
CHE 331	Heat Transfer and its Applications	2	3	-	5	100	50	-	2				5				150
CHE 341	Applied Electrochemistry and Corrosion Engineering	2	2	-	4	90	35	-	2				2			2	125
HUM 371	Project Management	2	1	-	3	50	25	-	2					3			75
	•		9	4									16	3	4	2	750
Tota	Total hour of first semester		25				Tota	al marks									730

Third Year / 2nd Semester

				Se	econd	semes	ster					Su	bject	t Area	a		
		1	Teachin	g Hou	rs		Marki	ng	r)	c.	.;			وده) e	e e	
Code	Course Name	Lectures	Tutorial	Practical hours	Total hours	Written Exam	Year work	Practical/ oral Exam	Exam Time (hr)	Hum. & Soc. Sc.	Math. & B. Sc.	B. Eng. Sc.	App. Eng. &	Comp. App. & ICT	Proj. & Practice	Selective course	Total marks
CHE 342	Material Science and New Materials	2	2	-	4	90	35	-	2			4					125
CHE 363	Polymer Engineering	2	-	2	4	75	30	20	2				2			2	125
CHE 364	High Temperature Industries	3	-	2	5	90	40	20	2				3		2		150
CHE 351	Modeling and Simulation in Chemical Engineering	2	3	-	5	100	50	-	2					5			150
CHE 3XX ₂	Selective Course(2)	2	2	-	4	90	35	-	2							4	125
CHE 3YY	Field Training (1)	-	-	3	3	-	75	-							3		75
I .		11	7	7			•					4	5	5	5	6	
Tota	l hour of second semester		25				Tota	al marks									750

				Fi	irst s	emeste	r					Su	bject .	Area			
		1	Teachin	g Hour	s	N	Iarking	,	r)	c.				.83) e	ie	
Code	Course Name	Lectures	Tutorial hours	Practical hours	Total hours	Written Exam	Year work	Practical/ oral Exam	Exam Time (hr)	Hum. & Soc. Sc.	Math. & B. Sc.	B. Eng. Sc.	App. Eng. & Des.	Comp. App. & ICT	Proj. & Practice	Selective course	Total marks
CHE 431	Mass Transfer and Multi-stage Separations (1)	2	2	-	4	80	30	15	2				4				125
CHE 491	Petroleum Refining Engineering	2	2	1	5	75	30	20	2				4		1		125
CHE 451	Chemical Reactors and Vessel Design	3	3	-	6	100	50	-	2				3	3			150
CHE 452	Process and Plant Design	2	2	-	4	80	30	15	2				4				125
CHE 453	Chemical Engineering Lab	1	-	3	4	60	20	20	2				1		3		100
CHE 4ZZ	Graduation Project	1	-	-	1	-	-	-	-						1		-
CHE 4YY	Field Training (2)	-	-	3	3	-	75	-	-						3		75
		11	9	7									16	3	8		700
Total ho	our of first semester		27		Total mark			s						,		/00	

Fourth Year / 2nd Semester

				S	econ	d seme	ster					Sub	ject A	Area			
		Te	achin	g Hou	ırs	N	Iarkiı	ıg	(hr)	Sc.]		×	ec	e e	
Code	Course Name	Lectures	Tutorial hours	Practical hours	Total hours	Written Exam	Year work	Practical/oral Exam	Exam Time (Hum. & Soc. S	Math. & B. Sc.	B. Eng. Sc.	App. Eng. & Des.	pp.	Proj. & Practice	Selective course	Total marks
CHE 432	Mass Transfer and Multi-stage Separations (2)	2	2	1	4	80	30	15	2				4				125
CHE 454	Process Control	2	2	-	4	100	50	-	2				2	2			150
CHE 455	Economics of Chemical Plants	2	2	-	4	70	30	-	2				4				100
CHE 481	Environmental Engineering	2	1	1	4	60	20	20	2				3		1		100
CHE 4XX ₃	Selective Course (3)	2	2	-	4	90	35	-	2							4	125
CHE 4ZZ	Graduation Project	1	1	3	4	-	75	125	-						4		200
		11	9	4									13	2	5	4	
Tota	al hour of second semester		24				Tota	al mark	S								800

^{*}Mass transfer & separation operation (1),(2) are continuous subjects

Total teaching hours and subject distribution over the subject areas chemical engineering

NARS %	100%	9-12%	20-26%	20-23%	20-22%	9-11%	8-10%	6-8%
% of Five Years	100%	10.4%	22.8%	21.6%	21.2%	8.8%	8.8%	6.4%
Total of Five Years	250	26	57	54	53	22	22	16
Total4th year 2 nd Semester	24				13	2	5	4
Total 4th year 1st Semester	27				16	3	8	
Total 3rd year2 nd Semester	24			4	5	5	5	6
Total 3rd year 1st Semester	25				16	3	4	2
Total 2nd year 2nd Semester	24	6	5	9				4
Total 2nd year 1st Semester	26	6		19		1		
Total 1st year 2 nd Semester	25	3	14	8				
Total 1st year 1st Semester	24	5	8	8	3			
Total prep year 2 nd Semester	25	4	13	3		5		
Total prep year 1st Semester	25	2	17	3		3		
	Course teaching hours credit hour	Humanities & Social Sciences	Math & Basic Sciences	Basic Eng	Applied Eng & Design	Computer Appl & ICT*	Projects* & Practice	Selective course

Courses in the Chemical Engineering Program according to Engineering Studies Sector Committee Requirements as follows

Requirements as follows			To	pic Are	a			S	
Topic	Humanities and Social Sciences	Business Management		Mathematics and Basic Sciences	Basic Engineering Sciences	Applied Engineering and	Projects and Practice	Total Contact hours	Total credit hours
Humanities and Social Sciences								21	14
Business Management								7	5
Engineering Culture								12	8
Mathematics and Basic Sciences								52	37
Basic Engineering Sciences								72	48
Applied Engineering and design								73	51
Projects and Practice								13	7
Total Credit hours	14	5	8	37	48	51	7		170
Total Contact hours	21	7	12	52	72	73	13	250	
% Credit hours	8.24%	2.94 %	4.71%	21.76%	28.23%	30%	4.12%		100%
%Contact hours	8.4%	2.8%	4.8%	20.8%	28.8%	29.2%	5.2%	100%	
The Engineering Studies Sector Committee Requirements	8-12%	2- 4%	4-6%	18-22%	25-30%	25-30%	4-6%		

		Topic	Area		rs.	
Topic	University Requirements	College Requirements	General Specialization Requirements	Specialization requirements	Total Contact hours	Total credit hours
University Requirements					24	16
College Requirements					75	49
General Specialization Requirements					86	59
Specialization requirements					65	46
Total Credit hours	16	49	59	46		170
Total Contact hours	24	75	86	65	250	
% Credit hours	9.41%	28.82%	34.71%	27.06%		100%
% Contact hours	9.6%	30%	34.4%	26%	100%	
Graduation Requirements	Min. 8%	Min. 20 %	Min. 35%	Max. 30%		

The above tables show the contact hours distribution and the requirements of

- The engineering sector and Supreme Council of Higher Education 2020
- The Egyptian NARS 2018, 2nd edition

It is the evident that the current program fulfills the NARS, The engineering sector requirements and Graduation requirement.

7. Courses contributing to the progra	am
---------------------------------------	----

Courses Code:	
Title course:	See Appendix 2 Course Description
Content:	

8. Program Admission Requirements

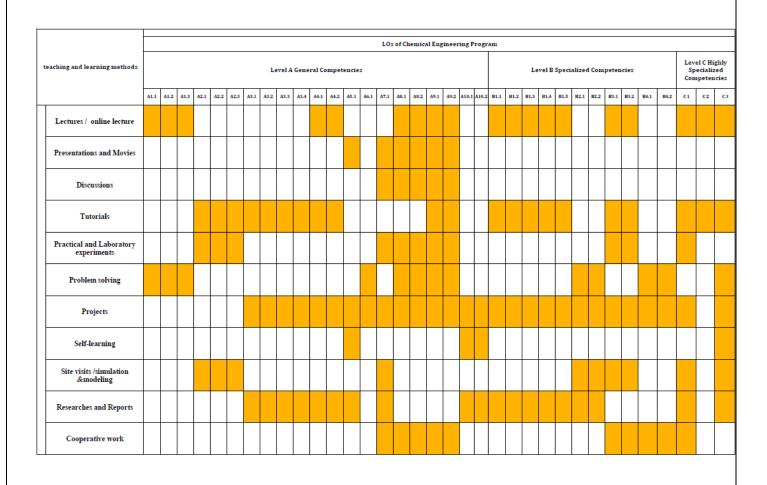
- Secondary Egyptian Schools Graduates.
- Secondary School Certificate Graduates of other countries are eligible to join this program if they meet the minimum grades set by Admission Office of the Ministry of Higher Education.
- The study begins with a preparatory year for all students before specialization in Chemical Engineering. Students departmental allocation is in accordance with the institute Council regulations.

9. Regulations for Progression and Program Completion

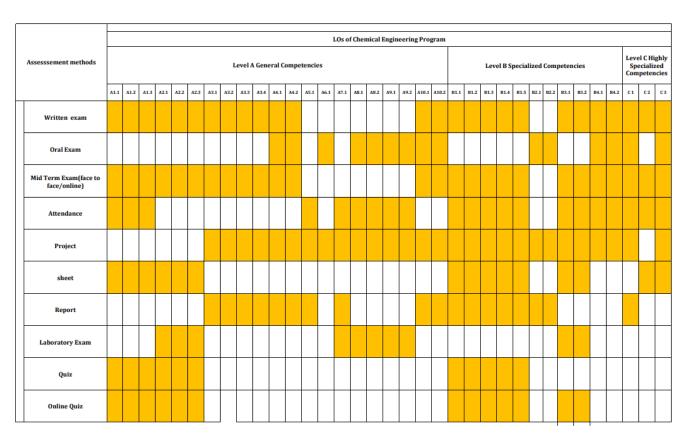
- The student is considered successful if he passes the examinations in all courses of his class.
- The student is promoted to the next higher level if he fails in not more than two subjects of his class or from lower classes.
- In addition to the two subjects mentioned in the previous item, the student who fails in two subjects in humanities and social sciences, whether from his class or from lower classes, is admitted to the transfer to the consecutive higher level. Passing successfully in all courses before attaining the B.Sc. degree is a prerequisite.
- The referred student has to sit the examination in the courses in which he has failed together with the students studying the same courses. The student gets a pass grade when he passes the examination successfully. In case the student was considered absent with acceptable excuse in a course, he gets the actual grade,
- The grades of the successful student in a course and in the general grade are evaluated as follows:
- Distinction: from 85% of the total mark and upwards.
- Very good: from 75% to less than 85% of the total mark.
- Good from: 65% to less than 75% of the total mark
- Pass: from: 50% to less than 65% of the total mark
- The grades of a failing student in a course are either one of the following grades:

Weak: from 30% to less than 50% of the total mark

Very weak: less than 30% of the total mark.


- The B.Sc. general grade for students is based on the cumulative marks obtained during all the years of study. The students are then arranged serially according to their cumulative sum.
- The student is awarded an honor degree if his cumulative sum is either distinction or very good provided that he gets a grade not less than very good in any class of study other than the preparatory year. Moreover, he should have not failed in any examination he sat in any class other than the preparatory year.

10. Methods and rules for student assessment


10.1 Teaching and learning methods.

10.2 Assessment Methods

11. Program Evaluation

Evaluator	Tool
1- Senior students	Questionnaire
2- Alumni	Questionnaire
3- Stakeholders	Questionnaire
4- External Evaluator(s) (External Examiner (s))	Report
5- Other societal parties	Questionnaire

Program Coordinator: Head of Chemical Engineering Department Associate prof. Dr. Ghada kadry

Signature:

Date:

In The Department Council 2-9-2024

In The Academic Council 18-9-2024

Appendix 1

Matrices

Table (1) Analysis of Program mission

Chemical Engineering Program

Program Mission Harness the capabilities and efforts to build, train and qualify chemical engineer professionally to conduct research and provide advisory services specialized in Chemical Engineering and science applications				
	Learning Mission	Post Graduate and Research Mission	Society and Environmental Affairs Mission	Ethics Mission
Harness the capabilities and efforts to build, train and qualify chemical engineer professionally,	V		V	√
conduct research	V	√		√
Provide advisory services specialized in Chemical Engineering and science applications		√	√	√

Table (2) Matrix of Program mission and Institute mission

Table (2) Matrix of Program mission and institute mission	
	Institute Mission:
	رسالة المعهد
Program Mission Harness the capabilities and efforts to build, train and qualify chemical engineer professionally to conduct research and provide advisory services specialized in Chemical Engineering and science applications	إعداد مهندسين قادرين على الإبداع من خلال البرامج الأكاديمية المختلفة تخريج مهندسين متميزين في تخصصات مختلفة تلبى احتياجات ومتطلبات سوق العمل تخريج مهندسين متميزين في تخصصات مختلفة تلبى احتياجات ومتطلبات سوق العمل العلمي ليتكامل مع متطلبات الصناعة والمجتمع المحلى الرسالة باللغة الانجليزية Preparation of creative engineers through various academic programs. Graduate distinguished engineers in different disciplines to meet the needs of the labor market. The development of scientific research to integrate with the industry and the local community requirements
Harness the capabilities and efforts to build, train and qualify chemical engineer professionally,	Preparation of creative engineers through various academic programs.
conduct research	The development of scientific research
Provide advisory services specialized in Chemical Engineering and science applications	Graduate distinguished engineers in different disciplines meet the needs of the labor market

Table (3) Matrix of Program mission and Program aims	
Program Mission	
Harness the capabilities and efforts to build, train and qualify chemical engineer professionally to conduct research and provide advisory services specialized in Chemical Engineering and science applications	Program aims
Harness the capabilities and efforts to build, train and qualify chemical engineer professionally,	 Apply knowledge and advanced technical skills in chemical engineering. Utilize and manage resources creatively through effective analysis and interpretation skill. Recognize the potential and applicability of computer-based methods in chemical engineering design. Address the issues of process dynamics and control in plant operation .
conduct research	2. Utilize and manage resources creatively through effective analysis and interpretation skill. 5. Plan and execute research work, evaluate outcomes, and draw conclusions.
Provide advisory services specialized in Chemical Engineering and science applications	 Utilize and manage resources creatively through effective analysis and interpretation skill. Address the issues of process dynamics and control in plant operation. Identify and control the impact that chemical engineering has on society from an environmental, economic, social and cultural point of view.

Table (4) Matrix of Program mission and the attributes of chemical engineer

Harness the capabilities and efforts to build, train and qualify chemical engineer professionally to conduct research and provide advisory services specialized in Chemical Engineering and science applications	The attributes of chemical engineer
Harness the capabilities and efforts to build, train and qualify chemical engineer professionally,	1. Master a wide spectrum of engineering knowledge and specialized skills and can apply acquired knowledge using theories and abstract thinking in real life situations.
	2. Apply analytic critical and systemic thinking to identify, diagnose and solve engineering problems with a wide range of complexity and variation.
	3. Behave professionally and adhere to engineering ethics and standards.
	4. Work in and lead a heterogeneous team of professionals from different engineering specialties and assume responsibility for own and team performance.
	7. Use techniques, skills and modern engineering tools necessary for engineering practice.
	9. Communicate effectively using different modes, tools and languages with various audiences; to deal with academic/professional challenges in a critical and creative manner.
conduct research	7. Use techniques, skills, and modern engineering tools necessary for engineering practice.

	8. Assume full responsibility for own learning and self-development, engage in lifelong learning and demonstrate the capacity to engage in post- graduate and research studies.
Provide advisory services specialized in Chemical Engineering and science applications	 Apply analytic critical and systemic thinking to identify, diagnose and solve engineering problems with a wide range of complexity and variation Behave professionally and adhere to engineering ethics and standards Recognize his/her role in promoting the engineering field and contribute in the development of the profession and the community Value the importance of the environment, both physical and natural, and work to promote sustainability principles Demonstrate leadership qualities, business administration and entrepreneurial skills

Table (5) Matrix of Program Aims and The attributes of chemical engineer

The attributes of chemical engineer	Program Aims
 Master a wide spectrum of engineering knowledge and specialized skills and can apply acquired knowledge using theories and abstract thinking in real life situations Apply analytic critical and systemic thinking to identify, diagnose and solve engineering problems with a wide range of complexity and variation Use techniques, skills, and modern engineering tools necessary for engineering practice Assume full responsibility for own learning and self-development, engage in lifelong learning and demonstrate the capacity to engage in postgraduate and research studies. 	Apply knowledge and Advanced technical skills in chemical engineering
 2. Apply analytic critical and systemic thinking to identify, diagnose and solve engineering problems with a wide range of complexity and variation 3. Behave professionally and adhere to engineering ethics and standards 7. Use techniques, skills and modern engineering tools necessary for engineering practice 	2. Utilize and manage resources creatively through effective analysis and interpretation skill.
 Apply analytic critical and systemic thinking to identify, diagnose and solve engineering problems with a wide range of complexity and variation Use techniques, skills and modern engineering tools necessary for engineering practice Communicate effectively using different modes, tools and languages with various audiences; to deal with academic/professional challenges in a critical and creative manner 	3. Recognize the potential and applicability of computer-based methods in chemical engineering design.
 3. Behave professionally and adhere to engineering ethics and standards 4. Work in and lead a heterogeneous team of professionals from different engineering specialties and assume responsibility for own and team performance 5. Recognize his/her role in promoting the engineering field and contribute in the development of the profession and the community 8. Assume full responsibility for own learning and self-development, engage in lifelong learning and demonstrate the capacity to engage in post-graduate and research studies 9. Communicate effectively using different modes, tools and languages with various audiences; to deal with academic/professional challenges in a critical and creative manner 10. Demonstrate leadership qualities, business administration and entrepreneurial skills 	4. Address the issues of process dynamics and control in plant operation.
Master a wide spectrum of engineering knowledge and specialized skills and can apply acquired knowledge using theories and abstract thinking in real life situations	5. Plan and execute research work, evaluate outcomes and draw conclusions.

The attributes of chemical engineer	Program Aims
2. Apply analytic critical and systemic thinking to identify, diagnose and solve engineering problems with a wide range of complexity and variation	
6. Value the importance of the environment, both physical and natural, and work to promote sustainability principles	
8. Assume full responsibility for own learning and self-development, engage in lifelong learning and demonstrate the capacity to engage in post-graduate and research studies	
2. Apply analytic critical and systemic thinking to identify, diagnose and solve engineering problems with a wide range of complexity and variation	
 3. Behave professionally and adhere to engineering ethics and standards 4. Work in and lead a heterogeneous team of professionals from different engineering specialties and assume responsibility for own and team performance 	6. Identify and control the impact that chemical engineering has on society from an environmental, economic, social, and cultural point of view.
 5. Recognize his/her role in promoting the engineering field and contribute in the development of the profession and the community 6. Value the importance of the environment, both physical and natural, and work to promote sustainability principles 	

Table (6a) Matrix of (LOs) for Chemical Engineering program and Program mission

(LOs) for Chemical Engineering program	Program mission
A _{1.1} Identify and formulate, engineering fundamentals, basic science, and	
mathematics in the field of Chemical Engineering.	
A _{1.2} Follow methodologies and techniques and explain the data collection and	
interpretation principle in solving engineering problem.	
A _{1.3} Apply engineering fundamentals, basic science, and mathematics to solve engineering problems	
A _{2.1} Develop and conduct appropriate experimentation and/or simulation	
A _{2.2} Analyze and interpret data, assess, and evaluate findings, draw simplified	
equipment flow sheets, charts, and curves, and interpret data derived from	
laboratory observation	
A2.3 Use statistical analyses and objective engineering judgment to draw conclusions.	
A _{9.1} Use creative, innovative, and flexible thinking in problem solving and design.	
A _{9.2} Acquire entrepreneurial and leadership skills to anticipate and respond to new situations.	
A _{10.1} Acquire and apply new knowledge in deal with the fundamental problems	
and troubleshooting in chemical engineering plants.	Harness the
A _{10.2} Practice self, lifelong and other learning strategies.	capabilities and efforts
$\mathbf{B}_{1.1}$ Explain the essential facts, concepts, theories and the characteristics attributes	to build, train and
of organic and inorganic reactions and its applications in the chemical process	qualify chemical
industries	engineer
B _{1.2} Use The conventional procedures of chemical analysis and characterization	professionally
common engineering materials and component.	professionary
B _{1.3} Demonstrate the chemical engineering principles and design principles technique	
in chemical engineering	
B _{1.4} Identify methods for petroleum and natural gas processing.	
B _{1.5} Design a practical chemical engineering system, component or process	
utilizing a full range of chemical engineering principles and techniques including	
Mass and Energy Balance, Thermodynamics, Mass Transfer, Heat Transfer,	
Momentum Transfer, Kinetics of Chemical Reactions, Reactor Design,	
Instrumentation and Control of Chemical Processes, and Process and Plant Design.	
B _{2.1} Engage in the recent technological changes and emerging fields relevant to	
chemical engineering.	
B _{2,2} Act as a professional chemical engineer and respond to the challenging role	
and responsibilities.	
B _{3.1} Explains basic information and methods of evaluation, good analysis,	
modelling and simulation of industrial processes	
B _{3.2} Apply numerical modelling methods and/or computational techniques	
appropriate to chemical engineering.	

(LOs) for Chemical Engineering program	Program mission
 C1 Acquire insight into the development of raw materials, and methods of conversion into a useful product, and improve the ability to select proper material of the construction of equipment in the industrial process. C2 Design and operate different processing systems in the chemical process industries including petroleum refining and gas processing and assess the balance of cost, quality, and effects on the environment in production operations. C3 Apply the concepts of project economics and resources evaluation methods for design and decision-making under conditions of risk and uncertainty. 	
A2.1 Develop and conduct appropriate experimentation and/or simulation A2.2 Analyze and interpret data, assess, and evaluate findings, draw simplified equipment flow sheets, charts, and curves, and interpret data derived from laboratory observation A2.3 Use statistical analyses and objective engineering judgment to draw conclusions A5.1 Practice research techniques and methods of investigation as an inherent part of learning A9.1 Use creative, innovative, and flexible thinking in problem solving and design. A9.2 Acquire entrepreneurial and leadership skills to anticipate and respond to new situations. A10.1 Acquire and apply new knowledge in deal with the fundamental problems and troubleshooting in chemical engineering plants. A10.2 Practice self, lifelong and other learning strategies. B3.1 Explains basic information and methods of evaluation, good analysis, modelling and simulation of industrial processes B3.2 Apply numerical modelling methods and/or computational techniques appropriate to chemical engineering. B4.1 Discuss the principle of quality assurance required for systems, codes, and standards, the health, safety requirements, and environmental issues in the Chemical Engineering field. B4.2 Adopt suitable national and international standards and codes to design, operate, inspect and maintain chemical engineering systems. C1 Acquire insight into the development of raw materials, and methods of conversion into a useful product, and improve the ability to select proper material of the construction of equipment in the industrial process. C3 Apply the concepts of project economics and resources evaluation methods for	To conduct research
design and decision-making under conditions of risk and uncertainty. A3.1 Discuss topics related to humanitarian interests and moral issues. A3.2 Analyze the environmental impacts of different industries, to minimize the waste and treat the industrial facilities. A3.3 Apply engineering design processes to produce cost effective solutions that meet specified needs with consideration for global, cultural, social, economic, environmental, ethical and other aspects as appropriate to the discipline and within the principles and contexts of sustainable design and development.	Provide advisory services specialized in Chemical Engineering and science applications.

(LOs) for Chemical Engineering program	Program mission
A _{3.4} Use Chemical Engineering IT tools and programming in design	
A _{4.1} Explain the business and the management principles relevant to chemical	
engineering	
A _{4.2} Utilize contemporary technologies, codes of practice and standards, quality	
guidelines, health and safety requirements, environmental issues, and risk	
management principles.	
A _{6.1} Plan, supervise and monitor implementation of engineering projects, taking	
into consideration other trades requirements.	
A _{7.1} Function efficiently as an individual and as a member of multi-disciplinary	
and multicultural teams	
A _{8.1} Write technical language and technical report	
As.2 Communicate effectively – graphically, verbally and in writing – with a range	
of audiences using contemporary tools.	
A _{9.1} Use creative, innovative, and flexible thinking in problem solving and design.	
A9.2 Acquire entrepreneurial and leadership skills to anticipate and respond to new	
situations.	
B _{2.1} Engage in the recent technological changes and emerging fields relevant to	
chemical engineering.	
B _{2.2} Act as a professional chemical engineer and respond to the challenging role	
and responsibilities.	
B _{3.1} Explains basic information and methods of evaluation, good analysis,	
modelling and simulation of industrial processes	
B _{3.2} Apply numerical modelling methods and/or computational techniques	
appropriate to chemical engineering.	
B _{4.1} Discuss the principle of quality assurance required for systems, codes, and	
standards, the health, safety requirements, and environmental issues in the	
Chemical Engineering field.	
B _{4.2} Adopt suitable national and international standards and codes to design,	
operate, inspect and maintain chemical engineering systems.	
C ₂ Design and operate different processing systems in the chemical process	
industries including petroleum refining and gas processing and assess the balance	
of cost, quality, and effects on the environment in production operations.	
C ₃ Apply the concepts of project economics and resources evaluation methods for	
design and decision-making under conditions of risk and uncertainty.	

Table (6b) Matrix of (LOs) for Chemical Engineering program and Program Aims

(LOs) for Chemical Engineering program	Program Aims
A1.1 Identify and formulate, engineering fundamentals, basic science, and mathematics in the field of Chemical Engineering. A1.2 Follow methodologies and techniques and explain the data collection and interpretation principle in solving engineering problem. A1.3 Apply engineering fundamentals, basic science, and mathematics to solve engineering problems A2.1 Develop and conduct appropriate experimentation and/or simulation A2.2 Analyze and interpret data, assess, and evaluate findings, draw simplified equipment flow sheets, charts, and curves, and interpret data derived from laboratory observation A2.3 Use statistical analyses and objective engineering judgment to draw conclusions A3.1 Discuss topics related to humanitarian interests and moral issues. A3.2 Analyze the environmental impacts of different industries, to minimize the waste and treat the industrial facilities. A3.3 Apply engineering design processes to produce cost effective solutions that meet specified needs with consideration for global, cultural, social, economic, environmental, ethical and other aspects as appropriate to the discipline and within the principles and contexts of sustainable design and development. A3.4 Use Chemical Engineering IT tools and programming in design A4.1 Explain the business and the management principles relevant to chemical engineering A4.2 Utilize contemporary technologies, codes of practice and standards, quality guidelines, health and safety requirements, environmental issues, and risk management principles. A5.1 Practice research techniques and methods of investigation as an inherent part of learning A10.1 Acquire and apply new knowledge in deal with the fundamental problems and troubleshooting in chemical engineering plants. A10.2 Practice self, lifelong and other learning strategies. B1.1 Explain the essential facts, concepts, theories and the characteristics attributes of organic and inorganic reactions and its applications in the chemical process industries B1.2 Use The conventional procedures of chemical	1. Apply knowledge and Advanced technical skills in chemical engineering

(I Os) for Chemical Engineering are grown	D A : a
(LOs) for Chemical Engineering program	Program Aims
including Mass and Energy Balance, Thermodynamics, Mass Transfer,	
Heat Transfer, Momentum Transfer, Kinetics of Chemical Reactions,	
Reactor Design, Instrumentation and Control of Chemical Processes, and	
Process and Plant Design.	
B _{2.1} Engage in the recent technological changes and emerging fields	
relevant to chemical engineering.	
B _{2.2} Act as a professional chemical engineer and respond to the	
challenging role and responsibilities.	
C ₃ Apply the concepts of project economics and resources evaluation	
methods for design and decision-making under conditions of risk and	
uncertainty.	
A _{2.1} Develop and conduct appropriate experimentation and/or simulation	
A2.2 Analyze and interpret data, assess, and evaluate findings, draw	
simplified equipment flow sheets, charts, and curves, and interpret data	
derived from laboratory observation	
A _{2.3} Use statistical analyses and objective engineering judgment to draw	
conclusions	2. Utilize and manage
A9.1 Use creative, innovative, and flexible thinking in problem solving and	resources creatively
design.	through effective
A _{9.2} Acquire entrepreneurial and leadership skills to anticipate and respond	analysis and
to new situations.	interpretation skill.
C ₁ Acquire insight into the development of raw materials, and methods of	
conversion into a useful product, and improve the ability to select proper material of the construction of equipment in the industrial process.	
C ₃ Apply the concepts of project economics and resources evaluation	
methods for design and decision-making under conditions of risk and	
uncertainty.	
A _{2.1} Develop and conduct appropriate experimentation and/or simulation	
A2.2 Analyze and interpret data, assess, and evaluate findings, draw	
simplified equipment flow sheets, charts, and curves, and interpret data	
derived from laboratory observation	
A_{2.3} Use statistical analyses and objective engineering judgment to draw	
conclusions	3. Recognize the
A _{3.1} Discuss topics related to humanitarian interests and moral issues.	potential and applicability of computer based
A _{3.2} Analyze the environmental impacts of different industries, to	
minimize the waste and treat the industrial facilities.	methods in chemical
A _{3.3} Apply engineering design processes to produce cost effective	engineering design.
solutions that meet specified needs with consideration for global, cultural,	
social, economic, environmental, ethical and other aspects as appropriate	
to the discipline and within the principles and contexts of sustainable	
design and development.	
A _{3.4} Use Chemical Engineering IT tools and programming in design	

معيدة الغروق	
(LOs) for Chemical Engineering program	Program Aims
B _{1.1} Explain the essential facts, concepts, theories and the characteristics	
attributes of organic and inorganic reactions and its applications in the	
chemical process industries	
B _{1.2} Use The conventional procedures of chemical analysis and	
characterization common engineering materials and component.	
B _{1.3} Demonstrate the chemical engineering principles and design principles	
techniques in chemical engineering	
B _{1.4} <u>Identify methods for petroleum and natural gas processing.</u>	
B _{1.5} Design a practical chemical engineering system, component or process	
utilizing a full range of chemical engineering principles and techniques	
including Mass and Energy Balance, Thermodynamics, Mass Transfer,	
Heat Transfer, Momentum Transfer, Kinetics of Chemical Reactions,	
Reactor Design, Instrumentation and Control of Chemical Processes, and	
Process and Plant Design.	
B _{2.1} Engage in the recent technological changes and emerging fields	
relevant to chemical engineering.	
B _{2,2} Act as a professional chemical engineer and respond to the	
challenging role and responsibilities.	
B _{3.1} Explains basic information and methods of evaluation, good analysis,	
modelling and simulation of industrial processes	
B _{3.2} Apply numerical modelling methods and/or computational techniques	
appropriate to chemical engineering.	
B _{4.1} Discuss the principle of quality assurance required for systems, codes,	
and standards, the health, safety requirements, and environmental issues in	
the Chemical Engineering field.	
B _{4.2} Adopt suitable national and international standards and codes to	
design, operate, inspect and maintain chemical engineering systems.	
C ₂ Design and operate different processing systems in the chemical	
process industries including petroleum refining and gas processing and	
assess the balance of cost, quality, and effects on the environment in	
production operations.	
C ₃ Apply the concepts of project economics and resources evaluation	
methods for design and decision-making under conditions of risk and	
uncertainty.	
A _{3.1} Discuss topics related to humanitarian interests and moral issues.	
A _{3.2} Analyze the environmental impacts of different industries, to	4. Address the issues
minimize the waste and treat the industrial facilities.	of process
A _{3.3} Apply engineering design processes to produce cost effective	dynamics and
solutions that meet specified needs with consideration for global, cultural,	control in plant
social, economic, environmental, ethical and other aspects as appropriate to the discipline and within the principles and contexts of sustainable	operation.
design and development.	
A _{3.4} Use Chemical Engineering IT tools and programming in design	

(LOs) for Chemical Engineering program	Program Aims
A _{6.1} Plan, supervise and monitor implementation of engineering projects,	
taking into consideration other trades requirements.	
A _{9.1} Use creative, innovative, and flexible thinking in problem solving and	
design.	
A _{9.2} Acquire entrepreneurial and leadership skills to anticipate and respond	
to new situations.	
$\mathbf{B}_{1.1}$ Explain the essential facts, concepts, theories and the characteristics	
attributes of organic and inorganic reactions and its applications in the	
chemical process industries	
B _{1,2} Use The conventional procedures of chemical analysis and	
characterization common engineering materials and component.	
B _{1,3} Demonstrate the chemical engineering principles and design principles	
techniques in chemical engineering	
B _{1.4} Identify methods for petroleum and natural gas processing.	
B _{1.5} Design a practical chemical engineering system, component or process	
utilizing a full range of chemical engineering principles and techniques	
including Mass and Energy Balance, Thermodynamics, Mass Transfer,	
Heat Transfer, Momentum Transfer, Kinetics of Chemical Reactions,	
Reactor Design, Instrumentation and Control of Chemical Processes, and	
Process and Plant Design.	
B _{2.1} Engage in the recent technological changes and emerging fields	
relevant to chemical engineering.	
B _{2.2} Act as a professional chemical engineer and respond to the	
challenging role and responsibilities.	
B _{4.1} Discuss the principle of quality assurance required for systems, codes,	
and standards, the health, safety requirements, and environmental issues in	
the Chemical Engineering field.	
B _{4.2} Adopt suitable national and international standards and codes to	
design, operate, inspect and maintain chemical engineering systems.	
A _{2.1} Develop and conduct appropriate experimentation and/or simulation	
A2.2 Analyze and interpret data, assess, and evaluate findings, draw	
simplified equipment flow sheets, charts, and curves, and interpret data	
derived from laboratory observation	
A _{2.3} Use statistical analyses and objective engineering judgment to draw	5. Plan and execute
conclusions	research work,
A _{5.1} Practice research techniques and methods of investigation as an	evaluate outcomes, and draw
inherent part of learning	conclusions.
A _{6.1} Plan, supervise and monitor implementation of engineering projects,	
taking into consideration other trades requirements.	
A _{10.1} Acquire and apply new knowledge in deal with the fundamental	
problems and troubleshooting in chemical engineering plants.	
A _{10.2} Practice self, lifelong and other learning strategies.	

(LOs) for Chemical Engineering program	Program Aims
B _{1.1} Explain the essential facts, concepts, theories and the characteristics	
attributes of organic and inorganic reactions and its applications in the	
chemical process industries	
B _{1.2} Use The conventional procedures of chemical analysis and	
characterization common engineering materials and component.	
B _{1.3} Demonstrate the chemical engineering principles and design principles	
techniques in chemical engineering	
B _{1.4} Identify methods for petroleum and natural gas processing.	
B _{1.5} Design a practical chemical engineering system, component or process	
utilizing a full range of chemical engineering principles and techniques	
including Mass and Energy Balance, Thermodynamics, Mass Transfer,	
Heat Transfer, Momentum Transfer, Kinetics of Chemical Reactions,	
Reactor Design, Instrumentation and Control of Chemical Processes, and	
Process and Plant Design.	
B _{2.1} Engage in the recent technological changes and emerging fields	
relevant to chemical engineering.	
B _{2.2} Act as a professional chemical engineer and respond to the	
challenging role and responsibilities.	
C ₁ Acquire insight into the development of raw materials, and methods of	
conversion into a useful product, and improve the ability to select proper	
material of the construction of equipment in the industrial process.	
A _{3.1} Discuss topics related to humanitarian interests and moral issues.	
A _{3.2} Analyze the environmental impacts of different industries, to	
minimize the waste and treat the industrial facilities.	
A _{3.3} Apply engineering design processes to produce cost effective solutions that meet specified needs with consideration for global, cultural,	
social, economic, environmental, ethical and other aspects as appropriate	
to the discipline and within the principles and contexts of sustainable	
design and development.	6. Identify and control
A _{3.4} Use Chemical Engineering IT tools and programming in design	the impact that
A _{4.1} Explain the business and the management principles relevant to	chemical engineering has on
chemical engineering	society from an
A _{4.2} Utilize contemporary technologies, codes of practice and standards,	environmental,
quality guidelines, health and safety requirements, environmental issues,	economic, social
and risk management principles.	and cultural point
A _{7.1} Function efficiently as an individual and as a member of multi-	of view.
disciplinary and multicultural teams	
A _{8.1} Write technical language and technical report	
A _{8.2} Communicate effectively – graphically, verbally and in writing – with	
a range of audiences using contemporary tools.	
B _{2.1} Engage in the recent technological changes and emerging fields	
relevant to chemical engineering.	

(LOs) for Chemical Engineering program	Program Aims
B _{2.2} Act as a professional chemical engineer and respond to the	
challenging role and responsibilities	
B _{4.1} Discuss the principle of quality assurance required for systems, codes,	
and standards, the health, safety requirements, and environmental issues in	
the Chemical Engineering field.	
B _{4.2} Adopt suitable national and international standards and codes to	
design, operate, inspect and maintain chemical engineering systems.	
C ₂ Design and operate different processing systems in the chemical	
process industries including petroleum refining and gas processing and	
assess the balance of cost, quality, and effects on the environment in	
production operations.	
C ₃ Apply the concepts of project economics and resources evaluation	
methods for design and decision-making under conditions of risk and	
uncertainty.	

Table (7) Matrix of (LOs) for Chemical Engineering program and attributes of chemical engineering

(LOs) for Chemical Engineering program	The attributes of chemical engineer
 A1.1 Identify and formulate, engineering fundamentals, basic science, and mathematics in the field of Chemical Engineering. A1.2 Follow methodologies and techniques and explain the data collection and interpretation principle in solving engineering problem. A1.3 Apply engineering fundamentals, basic science, and mathematics to solve engineering problems A10.1 Acquire and apply new knowledge in deal with the fundamental problems and troubleshooting in chemical engineering plants. A10.2 Practice self, lifelong and other learning strategies. B1.1 Explain the essential facts, concepts, theories and the characteristics attributes of organic and inorganic reactions and its applications in the chemical process industries B1.2 Use The conventional procedures of chemical analysis and characterization common engineering materials and component. B1.3 Demonstrate the chemical engineering principles and design principles techniques in chemical engineering B1.4 Identify methods for petroleum and natural gas processing. B1.5 Design a practical chemical engineering system, component or process utilizing a full range of chemical engineering principles and techniques including Mass and Energy Balance, Thermodynamics, Mass Transfer, Heat Transfer, Momentum Transfer, Kinetics of Chemical Reactions, Reactor Design, Instrumentation and Control of Chemical Processes, and Process and Plant Design. 	1. Master a wide spectrum of engineering knowledge and specialized skills and can apply acquired knowledge using theories and abstract thinking in real life situations

(LOs) for Chemical Engineering program	The attributes of chemical engineer
B _{4.1} Discuss the principle of quality assurance required for systems, codes, and	
standards, the health, safety requirements, and environmental issues in the	
Chemical Engineering field.	
B _{4.2} Adopt suitable national and international standards and codes to design,	
operate, inspect and maintain chemical engineering systems.	
C ₃ Apply the concepts of project economics and resources evaluation methods	
for design and decision-making under conditions of risk and uncertainty.	
A _{2.1} Develop and conduct appropriate experimentation and/or simulation	
A2.2 Analyze and interpret data, assess, and evaluate findings, draw simplified	
equipment flow sheets, charts, and curves, and interpret data derived from	
laboratory observation	
A2.3 Use statistical analyses and objective engineering judgment to draw	
conclusions	
A _{9.1} Use creative, innovative, and flexible thinking in problem solving and	
<u>design</u> .	
A _{9.2} Acquire entrepreneurial and leadership skills to anticipate and respond to	
new situations.	
$\mathbf{B}_{1.1}$ Explain the essential facts, concepts, theories and the characteristics	2 Apply applytic
attributes of organic and inorganic reactions and its applications in the chemical	2. Apply analytic critical and
process industries	systemic thinking
$\mathbf{B}_{1.2}$ Use The conventional procedures of chemical analysis and characterization	to identify,
common engineering materials and component.	diagnose and solve
B _{1.3} Demonstrate the chemical engineering principles and design principles	engineering
techniques in chemical engineering	problems with a
B _{1,4} <u>Identify methods for petroleum and natural gas processing.</u>	wide range of
B _{1.5} Design a practical chemical engineering system, component or process	complexity and
utilizing a full range of chemical engineering principles and techniques	variation
including Mass and Energy Balance, Thermodynamics, Mass Transfer, Heat	variation
Transfer, Momentum Transfer, Kinetics of Chemical Reactions, Reactor	
Design, Instrumentation and Control of Chemical Processes, and Process and	
Plant Design.	
C ₁ Acquire insight into the development of raw materials, and methods of	
conversion into a useful product, and improve the ability to select proper material of the construction of equipment in the industrial process.	
C ₂ Design and operate different processing systems in the chemical process	
industries including petroleum refining and gas processing and assess the	
balance of cost, quality, and effects on the environment in production	
operations.	
C ₃ Apply the concepts of project economics and resources evaluation methods	
for design and decision-making under conditions of risk and uncertainty.	

(LOs) for Chemical Engineering program	The attributes of chemical engineer
 A3.1 Discuss topics related to humanitarian interests and moral issues. A3.2 Analyze the environmental impacts of different industries, to minimize the waste and treat the industrial facilities. A3.3 Apply engineering design processes to produce cost effective solutions that meet specified needs with consideration for global, cultural, social, economic, environmental, ethical and other aspects as appropriate to the discipline and within the principles and contexts of sustainable design and development. A3.4 Use Chemical Engineering IT tools and programming in design A4.1 Explain the business and the management principles relevant to chemical engineering A4.2 Utilize contemporary technologies, codes of practice and standards, quality guidelines, health and safety requirements, environmental issues, and risk management principles. A6.1 Plan, supervise and monitor implementation of engineering projects, taking into consideration other trades requirements. B2.1 Engage in the recent technological changes and emerging fields relevant to chemical engineering. B2.2 Act as a professional chemical engineer and respond to the challenging role and responsibilities. B4.1 Discuss the principle of quality assurance required for systems, codes, and standards, the health, safety requirements, and environmental issues in the Chemical Engineering field. B4.2 Adopt suitable national and international standards and codes to design, operate, inspect and maintain chemical engineering systems. C1 Acquire insight into the development of raw materials, and methods of conversion into a useful product, and improve the ability to select proper material of the construction of equipment in the industrial process. C3 Apply the concepts of project economics and resources evaluation methods for design and decision-making under conditions of risk and uncertainty. 	3. Behave professionally and adhere to engineering ethics and standards
 A6.1 Plan, supervise and monitor implementation of engineering projects, taking into consideration other trades requirements. A7.1 Function efficiently as an individual and as a member of multi-disciplinary and multicultural teams A8.1 Write technical language and technical report A8.2 Communicate effectively – graphically, verbally and in writing – with a range of audiences using contemporary tools. 	4. Work in and lead a heterogeneous team of professionals from different engineering specialties and assume responsibility for own and team performance

A3.1 Discuss topics related to humanitarian interests and moral issues. A3.2 Analyze the environmental impacts of different industries, to minimize the waste and treat the industrial facilities. A3.3 Apply engineering design processes to produce cost effective solutions that meet specified needs with consideration for global, cultural, social, economic, environmental, ethical and other aspects as appropriate to the discipline and within the principles and contexts of sustainable design and development. A3.4 Use Chemical Engineering IT tools and programming in design B1.1 Explain the essential facts, concepts, theories and the characteristics attributes of organic and inorganic reactions and its applications in the chemical process industries B1.2 Use The conventional procedures of chemical analysis and characterization common engineering materials and component. B1.3 Demonstrate the chemical engineering principles and design principles techniques in chemical engineering B1.4 Identify methods for petroleum and natural gas processing. B1.5 Design a practical chemical engineering system, component or process utilizing a full range of chemical engineering principles and techniques including Mass and Energy Balance, Thermodynamics, Mass Transfer, Heat Transfer, Momentum Transfer, Kinetics of Chemical Reactions, Reactor Design, Instrumentation and Control of Chemical Processes, and Process and Plant Design. B2.1 Engage in the recent technological changes and emerging fields relevant to chemical engineering. B2.2 Act as a professional chemical engineer and respond to the challenging role and responsibilities. B4.1 Discuss the principle of quality assurance required for systems, codes, and
waste and treat the industrial facilities. A3.3 Apply engineering design processes to produce cost effective solutions that meet specified needs with consideration for global, cultural, social, economic, environmental, ethical and other aspects as appropriate to the discipline and within the principles and contexts of sustainable design and development. A3.4 Use Chemical Engineering IT tools and programming in design B1.1 Explain the essential facts, concepts, theories and the characteristics attributes of organic and inorganic reactions and its applications in the chemical process industries B1.2 Use The conventional procedures of chemical analysis and characterization common engineering materials and component. B1.3 Demonstrate the chemical engineering principles and design principles techniques in chemical engineering system, component or process utilizing a full range of chemical engineering system, component or process utilizing a full range of chemical engineering principles and techniques including Mass and Energy Balance, Thermodynamics, Mass Transfer, Heat Transfer, Momentum Transfer, Kinetics of Chemical Reactions, Reactor Design, Instrumentation and Control of Chemical Processes, and Process and Plant Design. B2.1 Engage in the recent technological changes and emerging fields relevant to chemical engineering. B2.2 Act as a professional chemical engineer and respond to the challenging role and responsibilities. B4.1 Discuss the principle of quality assurance required for systems, codes, and
A3.3 Apply engineering design processes to produce cost effective solutions that meet specified needs with consideration for global, cultural, social, economic, environmental, ethical and other aspects as appropriate to the discipline and within the principles and contexts of sustainable design and development. A3.4 Use Chemical Engineering IT tools and programming in design B1.1 Explain the essential facts, concepts, theories and the characteristics attributes of organic and inorganic reactions and its applications in the chemical process industries B1.2 Use The conventional procedures of chemical analysis and characterization common engineering materials and component. B1.3 Demonstrate the chemical engineering principles and design principles techniques in chemical engineering B1.4 Identify methods for petroleum and natural gas processing. B1.5 Design a practical chemical engineering system, component or process utilizing a full range of chemical engineering principles and techniques including Mass and Energy Balance, Thermodynamics, Mass Transfer, Heat Transfer, Momentum Transfer, Kinetics of Chemical Reactions, Reactor Design, Instrumentation and Control of Chemical Processes, and Process and Plant Design. B2.1 Engage in the recent technological changes and emerging fields relevant to chemical engineering. B2.2 Act as a professional chemical engineer and respond to the challenging role and responsibilities. B4.1 Discuss the principle of quality assurance required for systems, codes, and
meet specified needs with consideration for global, cultural, social, economic, environmental, ethical and other aspects as appropriate to the discipline and within the principles and contexts of sustainable design and development. A3.4 Use Chemical Engineering IT tools and programming in design B1.1 Explain the essential facts, concepts, theories and the characteristics attributes of organic and inorganic reactions and its applications in the chemical process industries B1.2 Use The conventional procedures of chemical analysis and characterization common engineering materials and component. B1.3 Demonstrate the chemical engineering principles and design principles techniques in chemical engineering principles and techniques in chemical engineering system, component or process utilizing a full range of chemical engineering system, component or process utilizing a full range of chemical engineering principles and techniques including Mass and Energy Balance, Thermodynamics, Mass Transfer, Heat Transfer, Momentum Transfer, Kinetics of Chemical Reactions, Reactor Design, Instrumentation and Control of Chemical Processes, and Process and Plant Design. B2.1 Engage in the recent technological changes and emerging fields relevant to chemical engineering. B2.2 Act as a professional chemical engineer and respond to the challenging role and responsibilities. B4.1 Discuss the principle of quality assurance required for systems, codes, and
attributes of organic and inorganic reactions and its applications in the chemical process industries B1.2 Use The conventional procedures of chemical analysis and characterization common engineering materials and component. B1.3 Demonstrate the chemical engineering principles and design principles techniques in chemical engineering B1.4 Identify methods for petroleum and natural gas processing. B1.5 Design a practical chemical engineering system, component or process utilizing a full range of chemical engineering principles and techniques including Mass and Energy Balance, Thermodynamics, Mass Transfer, Heat Transfer, Momentum Transfer, Kinetics of Chemical Reactions, Reactor Design, Instrumentation and Control of Chemical Processes, and Process and Plant Design. B2.1 Engage in the recent technological changes and emerging fields relevant to chemical engineering. B2.2 Act as a professional chemical engineer and respond to the challenging role and responsibilities. B4.1 Discuss the principle of quality assurance required for systems, codes, and
process industries B _{1.2} Use The conventional procedures of chemical analysis and characterization common engineering materials and component. B _{1.3} Demonstrate the chemical engineering principles and design principles techniques in chemical engineering principles and design principles B _{1.4} Identify methods for petroleum and natural gas processing. B _{1.5} Design a practical chemical engineering system, component or process utilizing a full range of chemical engineering principles and techniques including Mass and Energy Balance, Thermodynamics, Mass Transfer, Heat Transfer, Momentum Transfer, Kinetics of Chemical Reactions, Reactor Design, Instrumentation and Control of Chemical Processes, and Process and Plant Design. B _{2.1} Engage in the recent technological changes and emerging fields relevant to chemical engineering. B _{2.2} Act as a professional chemical engineer and respond to the challenging role and responsibilities. B _{4.1} Discuss the principle of quality assurance required for systems, codes, and
common engineering materials and component. B _{1.3} Demonstrate the chemical engineering principles and design principles techniques in chemical engineering B _{1.4} Identify methods for petroleum and natural gas processing. B _{1.5} Design a practical chemical engineering system, component or process utilizing a full range of chemical engineering principles and techniques including Mass and Energy Balance, Thermodynamics, Mass Transfer, Heat Transfer, Momentum Transfer, Kinetics of Chemical Reactions, Reactor Design, Instrumentation and Control of Chemical Processes, and Process and Plant Design. B _{2.1} Engage in the recent technological changes and emerging fields relevant to chemical engineering. B _{2.2} Act as a professional chemical engineer and respond to the challenging role and responsibilities. B _{4.1} Discuss the principle of quality assurance required for systems, codes, and
techniques in chemical engineering B _{1.4} Identify methods for petroleum and natural gas processing. B _{1.5} Design a practical chemical engineering system, component or process utilizing a full range of chemical engineering principles and techniques including Mass and Energy Balance, Thermodynamics, Mass Transfer, Heat Transfer, Momentum Transfer, Kinetics of Chemical Reactions, Reactor Design, Instrumentation and Control of Chemical Processes, and Process and Plant Design. B _{2.1} Engage in the recent technological changes and emerging fields relevant to chemical engineering. B _{2.2} Act as a professional chemical engineer and respond to the challenging role and responsibilities. B _{4.1} Discuss the principle of quality assurance required for systems, codes, and
 B1.4 Identify methods for petroleum and natural gas processing. B1.5 Design a practical chemical engineering system, component or process utilizing a full range of chemical engineering principles and techniques including Mass and Energy Balance, Thermodynamics, Mass Transfer, Heat Transfer, Momentum Transfer, Kinetics of Chemical Reactions, Reactor Design, Instrumentation and Control of Chemical Processes, and Process and Plant Design. B2.1 Engage in the recent technological changes and emerging fields relevant to chemical engineering. B2.2 Act as a professional chemical engineer and respond to the challenging role and responsibilities. B4.1 Discuss the principle of quality assurance required for systems, codes, and
 B_{1.5} Design a practical chemical engineering system, component or process utilizing a full range of chemical engineering principles and techniques including Mass and Energy Balance, Thermodynamics, Mass Transfer, Heat Transfer, Momentum Transfer, Kinetics of Chemical Reactions, Reactor Design, Instrumentation and Control of Chemical Processes, and Process and Plant Design. B_{2.1} Engage in the recent technological changes and emerging fields relevant to chemical engineering. B_{2.2} Act as a professional chemical engineer and respond to the challenging role and responsibilities. B_{4.1} Discuss the principle of quality assurance required for systems, codes, and
utilizing a full range of chemical engineering principles and techniques including Mass and Energy Balance, Thermodynamics, Mass Transfer, Heat Transfer, Momentum Transfer, Kinetics of Chemical Reactions, Reactor Design, Instrumentation and Control of Chemical Processes, and Process and Plant Design. B2.1 Engage in the recent technological changes and emerging fields relevant to chemical engineering. B2.2 Act as a professional chemical engineer and respond to the challenging role and responsibilities. B4.1 Discuss the principle of quality assurance required for systems, codes, and
including Mass and Energy Balance, Thermodynamics, Mass Transfer, Heat Transfer, Momentum Transfer, Kinetics of Chemical Reactions, Reactor Design, Instrumentation and Control of Chemical Processes, and Process and Plant Design. B2.1 Engage in the recent technological changes and emerging fields relevant to chemical engineering. B2.2 Act as a professional chemical engineer and respond to the challenging role and responsibilities. B4.1 Discuss the principle of quality assurance required for systems, codes, and
Transfer, Momentum Transfer, Kinetics of Chemical Reactions, Reactor Design, Instrumentation and Control of Chemical Processes, and Process and Plant Design. B2.1 Engage in the recent technological changes and emerging fields relevant to chemical engineering. B2.2 Act as a professional chemical engineer and respond to the challenging role and responsibilities. B4.1 Discuss the principle of quality assurance required for systems, codes, and
Design, Instrumentation and Control of Chemical Processes, and Process and Plant Design. B2.1 Engage in the recent technological changes and emerging fields relevant to chemical engineering. B2.2 Act as a professional chemical engineer and respond to the challenging role and responsibilities. B4.1 Discuss the principle of quality assurance required for systems, codes, and
Plant Design. B _{2.1} Engage in the recent technological changes and emerging fields relevant to chemical engineering. B _{2.2} Act as a professional chemical engineer and respond to the challenging role and responsibilities. B _{4.1} Discuss the principle of quality assurance required for systems, codes, and
B _{2.1} Engage in the recent technological changes and emerging fields relevant to chemical engineering. B _{2.2} Act as a professional chemical engineer and respond to the challenging role and responsibilities. B _{4.1} Discuss the principle of quality assurance required for systems, codes, and
chemical engineering. B2.2 Act as a professional chemical engineer and respond to the challenging role and responsibilities. B4.1 Discuss the principle of quality assurance required for systems, codes, and
and responsibilities. B _{4.1} Discuss the principle of quality assurance required for systems, codes, and
B _{4.1} Discuss the principle of quality assurance required for systems, codes, and
standards, the health, safety requirements, and environmental issues in the Chemical Engineering field.
B _{4,2} Adopt suitable national and international standards and codes to design,
operate, inspect and maintain chemical engineering systems.
C ₁ Acquire insight into the development of raw materials, and methods of
conversion into a useful product, and improve the ability to select proper
material of the construction of equipment in the industrial process.
C ₂ Design and operate different processing systems in the chemical process
industries including petroleum refining and gas processing and assess the
balance of cost, quality, and effects on the environment in production
operations.

بمبيلة الفروق	The attributes
(LOs) for Chemical Engineering program	of chemical engineer
A4.1 Explain the business and the management principles relevant to chemical engineering A4.2 Utilize contemporary technologies, codes of practice and standards, quality guidelines, health and safety requirements, environmental issues, and risk management principles. B1.1 Explain the essential facts, concepts, theories and the characteristics attributes of organic and inorganic reactions and its applications in the chemical process industries B1.2 Use The conventional procedures of chemical analysis and characterization common engineering materials and component. B1.3 Demonstrate the chemical engineering principles and design principles techniques in chemical engineering principles and design principles techniques in chemical engineering graph system, component or process utilizing a full range of chemical engineering principles and techniques including Mass and Energy Balance, Thermodynamics, Mass Transfer, Heat Transfer, Momentum Transfer, Kinetics of Chemical Reactions, Reactor Design, Instrumentation and Control of Chemical Processes, and Process and Plant Design. B2.1 Engage in the recent technological changes and emerging fields relevant to chemical engineering. B2.2 Act as a professional chemical engineer and respond to the challenging role and responsibilities. B4.1 Discuss the principle of quality assurance required for systems, codes, and standards, the health, safety requirements, and environmental issues in the Chemical Engineering field. B4.2 Adopt suitable national and international standards and codes to design, operate, inspect and maintain chemical engineering systems. C2 Design and operate different processing systems in the chemical process industries including petroleum refining and gas processing and assess the balance of cost, quality, and effects on the environment in production operations. C3 Apply the concepts of project economics and resources evaluation methods for design and decision-making under conditions of risk and uncertainty.	6. Value the importance of the environment, both physical and natural, and work to promote sustainability principles
A4.1 Explain the business and the management principles relevant to chemical engineering A4.2 Utilize contemporary technologies, codes of practice and standards, quality guidelines, health and safety requirements, environmental issues, and risk management principles.	7. Use techniques, skills and modern engineering tools necessary for engineering practice

(LOs) for Chemical Engineering program	The attributes of chemical engineer
B1.1 Explain the essential facts, concepts, theories and the characteristics attributes of organic and inorganic reactions and its applications in the chemical process industries B1.2 Use The conventional procedures of chemical analysis and characterization common engineering materials and component. B1.3 Demonstrate the chemical engineering principles and design principles techniques in chemical engineering B1.4 Identify methods for petroleum and natural gas processing. B1.5 Design a practical chemical engineering system, component or process utilizing a full range of chemical engineering principles and techniques including Mass and Energy Balance, Thermodynamics, Mass Transfer, Heat Transfer, Momentum Transfer, Kinetics of Chemical Reactions, Reactor Design, Instrumentation and Control of Chemical Processes, and Process and Plant Design. B3.1 Explains basic information and methods of evaluation, good analysis, modelling and simulation of industrial processes B3.2 Apply numerical modelling methods and/or computational techniques appropriate to chemical engineering. A5.1 Practice research techniques and methods of investigation as an inherent part of learning A10.1 Acquire and apply new knowledge in deal with the fundamental problems and troubleshooting in chemical engineering plants. A10.2 Practice self, lifelong and other learning strategies.	8. Assume full responsibility for own learning and self-development, engage in lifelong learning and demonstrate the capacity to engage in post- graduate and research studies
 A_{6.1} Plan, supervise and monitor implementation of engineering projects, taking into consideration other trades requirements. A_{7.1} Function efficiently as an individual and as a member of multi-disciplinary and multicultural teams A_{8.1} Write technical language and technical report A_{8.2} Communicate effectively – graphically, verbally and in writing – with a range of audiences using contemporary tools. A_{9.1} Use creative, innovative, and flexible thinking in problem solving and design. A_{9.2} Acquire entrepreneurial and leadership skills to anticipate and respond to new situations. 	9. Communicate effectively using different modes, tools and languages with various audiences; to deal with academic/professio nal challenges in a critical and creative manner

(LOs) for Chemical Engineering program	The attributes of chemical engineer
B _{2.1} Engage in the recent technological changes and emerging fields relevant to	
chemical engineering.	
B _{2.2} Act as a professional chemical engineer and respond to the challenging role	
and responsibilities.	
B _{3.1} Explains basic information and methods of evaluation, good analysis,	
modelling and simulation of industrial processes	
B _{3.2} Apply numerical modelling methods and/or computational techniques	
appropriate to chemical engineering.	
A _{3.1} Discuss topics related to humanitarian interests and moral issues.	
A _{3.2} Analyze the environmental impacts of different industries, to minimize the	
waste and treat the industrial facilities.	
A _{3.3} Apply engineering design processes to produce cost effective solutions that meet specified needs with consideration for global, cultural, social, economic, environmental, ethical and other aspects as appropriate to the discipline and within the principles and contexts of sustainable design and development. A _{3.4} Use Chemical Engineering IT tools and programming in design	
A4.1 Explain the business and the management principles relevant to chemical	
engineering	
A _{4.2} Utilize contemporary technologies, codes of practice and standards, quality	
guidelines, health and safety requirements, environmental issues, and risk	
management principles.	
A _{6.1} Plan, supervise and monitor implementation of engineering projects, taking	10. Demonstrate
into consideration other trades requirements.	leadership qualities,
A _{7.1} Function efficiently as an individual and as a member of multi-disciplinary	business administration
and multicultural teams	and entrepreneurial
A _{8.1} Write technical language and technical report	skills
A _{8.2} Communicate effectively – graphically, verbally and in writing – with a	
range of audiences using contemporary tools.	
A _{9.1} Use creative, innovative, and flexible thinking in problem solving and	
design.	
A _{9.2} Acquire entrepreneurial and leadership skills to anticipate and respond to	
new situations.	
C ₂ Design and operate different processing systems in the chemical process	
industries including petroleum refining and gas processing and assess the	
balance of cost, quality, and effects on the environment in production	
operations.	
C ₃ Apply the concepts of project economics and resources evaluation methods	
for design and decision-making under conditions of risk and uncertainty.	

Table (8) Matrix of National Reference Standards (NARS 2018) and (LOs) for Chemical Engineering

A. Level A Competencies

National Academic Reference Standards (NARS2018) of Chemical Engineering (competencies)	LOS of chemical engineering regulation 2019
A1 Identify, formulate, and solve complex engineering problems by applying engineering fundamentals, basic science and mathematics	A _{1.1} Identify and formulate, engineering fundamentals, basic science, and mathematics in the field of Chemical Engineering. A _{1.2} Follow methodologies and techniques and explain the data collection and interpretation principle in solving engineering problems. B _{1.1} Explain the essential facts, concepts, theories and the characteristics attributes of organic and inorganic reactions and its applications in the chemical process industries. B _{1.2} Use The conventional procedures of chemical analysis and characterization common engineering materials and component. B _{1.3} Demonstrate the chemical engineering principles and design principles techniques in chemical engineering. B _{1.4} Identify methods for petroleum and natural gas processing. B _{3.1} Explains basic information and methods of evaluation, good analysis, modelling, and simulation of industrial processes. A _{1.3} Apply engineering fundamentals, basic science, and mathematics to solve engineering problems.
A2 <u>Develop</u> and conduct appropriate experimentation and/or <u>simulation</u> , analyze and <u>interpret data</u> , assess and <u>evaluate</u> findings, and <u>use statistical</u> analyses and objective engineering judgment to <u>draw conclusions</u> .	A _{2.1} <u>Develop</u> and conduct appropriate experimentation and/or <u>simulation</u> . A _{2.2} <u>Analyze</u> and <u>interpret data</u> , <u>assess</u> and <u>evaluate</u> findings, draw simplified equipment flow sheets, charts and curves and interpret data derived from laboratory observation. A _{2.3} <u>Use statistical analyses</u> and objective engineering judgment to <u>draw conclusions</u> .
A3 Apply engineering design processes to produce cost effective solutions that meet specified needs with consideration for global, cultural, social, economic, environmental, ethical and other aspects as appropriate to the discipline and within the principles and contexts of sustainable design and development.	A _{3.1} Discuss topics related to humanitarian interests and moral issues A _{4.2} Utilize contemporary technologies, codes of practice and standards, quality guidelines, health and safety requirements, environmental issues, and risk management principles. A _{3.3} Apply engineering design processes to produce cost effective solutions that meet specified needs with consideration for global, cultural, social, economic, environmental, ethical and other aspects as appropriate to the discipline and within the principles and contexts of sustainable design and development. A _{3.4} Use Chemical Engineering IT tools and programming in design.

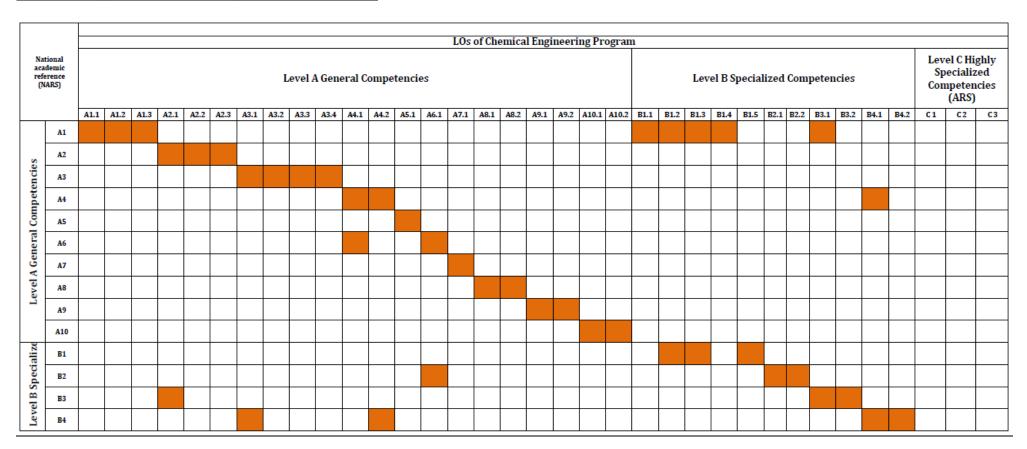
National Academic Reference Standards (NARS2018) of Chemical Engineering (competencies)	LOS of chemical engineering regulation 2019
A4 Utilize contemporary technologies, codes of practice and standards, quality guidelines, health and safety requirements, environmental issues and risk management principles.	B _{4.1} Discuss the principle of quality assurance required for system, codes and standards, the health, safety requirements and environmental issues in the Chemical Engineering field. A _{4.1} Explain the business and the management principles relevant to chemical engineering A _{4.2} Utilize contemporary technologies, codes of practice and standards, quality guidelines, health and safety requirements, environmental issues and risk management principles.
A5 <u>Practice research techniques</u> and methods of investigation as an inherent part of learning.	A _{5.1} Practice research techniques and methods of investigation as an inherent part of learning
A6 Plan, supervise and monitor implementation of engineering projects, taking into consideration other trades requirements.	A _{4.1} Explain the business and the management principles relevant to chemical engineering A _{6.1} Plan, supervise and monitor implementation of engineering projects, taking into consideration other trades requirements.
A7 Function efficiently as an individual and as a member of multi-disciplinary and multicultural teams.	A _{7.1} Function efficiently as an individual and as a member of multi-disciplinary and multicultural teams
A8 <u>Communicate</u> effectively – <u>graphically</u> , verbally and in <u>writing</u> – with a range of audiences using contemporary tools.	A _{8.1} Write technical language and technical report A _{8.2} Communicate effectively – graphically, verbally and in writing – with a range of audiences using contemporary tools.
A9 <u>Use creative</u> , innovative and flexible thinking and acquire entrepreneurial and leadership skills to anticipate and respond to new situations.	A _{9.1} Use creative, innovative, and flexible thinking <u>in</u> problem solving and design. A _{9.2} Acquire <u>entrepreneurial</u> and <u>leadership</u> skills to anticipate and respond to new situations.
A10 Acquire and apply new knowledge, and practice self, lifelong and other learning strategies.	A _{10.1} Acquire and apply new knowledge in deal with the fundamental problems and troubleshooting in chemical engineering plants. A _{10.2} practice self, lifelong and other learning strategies.

B. Specialized Competencies Chemical Engineering (level B)

National Academic Reference Standards (NARS2018) of Chemical Engineering	LOS of chemical engineering regulation 2019
(chemical engineering) B1 Design a practical chemical engineering system, component or process utilizing a full range of chemical engineering principles and techniques including: Mass and Energy Balance, Thermodynamics, Mass Transfer, Heat Transfer, Momentum Transfer, Kinetics of Chemical Reactions, Reactor Design,	B _{1.2} Use The conventional procedures of chemical analysis and characterization common engineering materials and component B _{1.3} Demonstrate the chemical engineering principles and design principles techniques in chemical engineering B _{1.5} <u>Design a practical</u> chemical engineering system, component or process utilizing a full range of chemical engineering principles and techniques including: <u>Mass</u>

Instrumentation and Control of Chemical Processes, and Process and Plant Design.	and Energy Balance, Thermodynamics, Mass Transfer, Heat Transfer, Momentum Transfer, Kinetics of Chemical Reactions, Reactor Design, Instrumentation and Control of Chemical Processes, and Process and Plant Design.
B2 Engage in the recent technological changes and emerging fields relevant to chemical engineering to respond to the challenging role and responsibilities of a professional chemical engineer.	A _{6.1} Plan, supervise and monitor implementation of engineering projects, taking into consideration other trades requirements. B _{2.1} Engage in the recent technological changes and emerging fields relevant to chemical engineering. B _{2.2} Act as a professional chemical engineer and respond to the challenging role and responsibilities.
B3 Apply numerical modeling methods and/or computational techniques appropriate to chemical engineering.	B _{3.1} Explains basic information and methods of evaluation, good analysis, modelling and simulation of industrial processes A _{2.1} Develop and conduct appropriate experimentation and/or simulation B _{3.2} Apply numerical modeling methods and/or computational techniques appropriate to chemical engineering
B4 Adopt suitable national and international standards and codes to: design, operate, inspect and maintain chemical engineering systems.	B _{4.1} Discuss the principle of quality assurance required for system, codes and standards, the health, safety requirements and environmental issues in the Chemical Engineering field. A _{3.1} Discuss topics related to humanitarian interests and moral issues A _{4.2} Utilize contemporary technologies, codes of practice and standards, quality guidelines, health and safety requirements, environmental issues, and risk management principles. B _{4.2} Adopt suitable national and international standards and codes to: design, operate, inspect and maintain chemical engineering systems

Level C: Hig	hly specialized competencies of Chemical engineering program
	C1Acquire insight in the development of raw material, methods of conversion
es	into a useful product, improve the ability to select proper material of
ARS Competencies	construction of equipment in industrial process
	C2 Design and operate different processing systems in the chemical process
SS dua	industries including petroleum refining and gas processing and assess the
AI Co	balance of cost, quality and effects on the environment in production operations
	C3 Apply the concepts of project economics and resources evaluation methods
	for design and decision making under conditions of risk and uncertainty.


Matrix 1- Curriculum Mapping Matrix (Appendix 1)

	X 1- Cultic																T.	arnir	a Outa	omes (I	(Oe)																—	
de 13	Course title										Level	A Gener	al Comp	etencies			L	armin	g Oute	omes (1	JOS)					Le	vel B Sne	cialized Co	mneten	ries				Level	C Highly	- 8	um o	of LOs
Course	Course title	A1.1	A1.2	A1.3	A2.1	A2.2	A2.3	A3.1	A3.2	A3.3				A5.1	A6.1	A7.1	A8.1	A8.2	A9.1	A9.2	A10.1	A10.2	B1.1	B1.2	B1.3			B2.1			B3.2	B4.1	B4.2		c2 C3	A	В	c 3
PRM 011	Mathematics (I) Physics (I)																																			3	0	0 3
PRM 013	Physics(I) Mechanics (I)	- 1		- 1																														\vdash	_	3 5	0	0 3
ARC 001	Engineering Drawing& Projection (1)			-																																8	0	0 8
CHE OLI	Clembiny SCH.	- 1									-											-										\vdash		+	+	3		0 4
BUMBII	Technical English Language (1)																	-																		5		0 5
PROE 012	Mathematics (2) Physics(2)	- 1																												1				+	+	3		
PROFESS ARC 012	Mechanics (2) Engineering Druning& Projection (2)																																	\Box		4	0	0 4
PR01-017	Production Technology									-			-				-					-														4	0	0 5 0 4 0 5
BUM 612	History of engineering and irobandary Technical English Language (2)										-					- 1	-	-						_								-		\vdash	_	5	0	0 5
CHE 121				-		- 1																	-											\Rightarrow		4	- 1	0 5
PROLITE	Mathematics (3)						-												-															\vdash	_	5		0 4
PROL 173 CHE 181	Physics(I) Machine Broign																																	\blacksquare			5	0 5
BUM ITS	* Indicated psychology Independent exhibits																																			3		0 0
HLM 172	International relations technical councis	-										-						-																\vdash	_		0	
CHE 122	Organic Cleminity (1)						-										-																			8		0 8
CHE 123 PRM 172	Mathematics (II)			-															-															\vdash	_	5	0	0 6
PRM 176 CVE 112	Mechanics (2)																																	\blacksquare	_	4	1	0 5
EPM 116				-																																	2	
BUM ITS	* شریعت و خدی رداند اعتباط * تشریعات و خود والکنیات والدو اصفات																																	\vdash	_	3		
	البينة وغدمة المجتمع																-																					
CHE 221			- 1														-								- 1									\vdash	_	3		0 7
CHE 222	Physical Chemistry and Thermodynamics					-	-																	-			100							\Box		4	4	0 8
ERIM 271																																-				2	4	0 4
BUM 272 CBK 223	Research and analysis skills Physical chemistry and phase equilibrium																-	-																\vdash			2	0 3
CHE 224	Organic and Binchemistry (3)																				-							-				-				6	5	0 11
PRO1271		- 1						-											-															\vdash	_	5	5 0 1	0 5
CHEZXX	Resemble Energy Resource registering																											-				-		\blacksquare		╛	1 1	1 1 1
CHEEK,	" valid waste management " water invaluant Eleviter humbily course																																	\pm		•	3	0 3
BEIM 279 BEM 276	Nation Planting																																	\Box		4 7	0	0 4
CHE J71	Mechanical and operations									-																										2	2	0 4
CHE J61	Organic chemical industries Integrate chemical industries								-															- 1			- 1	-				-		-	-	3	3	0 4
CHE 301	Heat transfer and it's application																											-						\Rightarrow		0	4	0 4
HUMO21	Applied Electrochemistry and corresion regimering Project Management																										-					-					1	0 5 2 3
CHE 362	Material Science and new materials																																			0	5	
CHE 364																			-								100		100	100						1	7	0 8
	Modeling and simulation in Chemical Engineering Principlessical																								-									\vdash			3	
CHEAX	* Bischemical industry																																			1		1 - 1 - 1
CHEAN																			-				-	-	- 1									\vdash	_	3	3	0 6
CHE 491	Friedram Relating Engineering																																	100		0	1	3 4
CHE 481																									- 1		- 1					-					3	1 4
CHE 483	Lab of Chemical Engineering														-									-						-				\Box		2	5	0 7 0 11
CHE-6ZZ	Graduation project(2)																				-													-		7	4	3 14
CHE-MY																										\vdash										0	2	3 5
CHE 454	Frances control																																			0	3 4 0	0 4
CHE 488		_	_				_	_		\vdash								_		_			_	\vdash				\vdash		-		\vdash				*	0	2 2 2
	Freiller inhalog																																	-		0	0	3 3
CHE exx,	Natural gas Engineering * Advanced Modeling & visualation in chemical Engineering																																			•		
	Nuclear and Endistan regionsing	26	12	17	9	22	8	3	2	7	8	1	7	8	2	10	12	9	8	2	6	10	- 11	16	26	3	16	- 11		12		12	0	6	0 0	9	6	0 6 23 335
		20	12	17	y	22	8	- 3	3	- /	- 8	.5	- /	- 8	2	10	12	7	- 8	3	0	10	1 11	16	20		13	11	3	12	8	12	y	2	7 9	191	125	23 335

Matrix 2 Mapping of NARS to the program LOs (Matrix)

Matrix 3 Mapping of Program mission and Program aims (Matrix)

	The chemical engineering program mission	1	Chem	ngine m Aims	ering	6
ion	harness the capabilities and efforts to build, train and qualify chemical engineer professionally,			-		_
Program Mission	conduct research					
Prog	provides advisory services specialized in Chemical Engineering and science applications					

Matrix 4 Mapping of Program mission and the program LOs (matrix)

														Com	npeter	ncies (of Che	mical	Engi	neeri	ng Pr	ogran	1												
The chemical engineering program mission		Level A General Competencies Level B Specialized Competencies													Level C Highly Specialized Competencies																				
	A1.1	A1.2	A1.3	A2.1	A2.2	A2.3	A3.1	A3.2	A3.3	A3.4	A4.1	A4.2	A5.1	A6.1	A7.1	A8.1	A8.2	A9.1	A9.2	A10.1	A10.2	B1.1	B1.2	B1.3	B1.4	B1.5	B2.1	B2.2	B3.1	В3.2	B4.1	B4.2	C1	C2	С3
harness the capabilities and efforts to build, train and qualify chemical engineer professionally																																			
To conduct research																																			
Provide advisory services specialized in Chemical Engineering and science applications.																																			

Matrix 5 Mapping of Program mission and Attributes of Chemical Engineer (matrix)

	The chemical engineering program's Mission	Chemical Engineer															
			Attributes of Chemical Engineer														
		1	2	3	4	5	6	7	8	9	10						
ion	harness the capabilities and efforts to build, train and qualify chemical engineer professionally,																
Program's Mission	conduct research																
Pro	provides advisory services specialized in Chemical Engineering and science applications																

Matrix 6 Mapping of Program Aims and Attributes of Chemical Engineer (matrix)

	The chemical engineering Program Aims				Chem	nical E	Engine	ering			
					ttribute	s of Cher	mical En	gineerin	g		
		1	2	3	4	5	6	7	8	9	10
	1. Apply knowledge and Advanced technical skills in chemical engineering										
	2. Utilize and manage resources creatively through effective analysis and interpretation skill.										
n Aims	3. Recognize the potential and applicability of computer-based methods in chemical engineering design.										
Program Aims	4. Address the issues of process dynamics and control in plant operation.										
	5. Plan and execute research work, evaluate outcomes and draw conclusions.										
	6. Identify and control the impact that chemical engineering has on society from an environmental, economic, social, and cultural point of view.										

Matrix 7 Mapping of Program Aims and Chemical Engineering program LOs (matrix)

															Comp	eteno	cies of	Chen	nical E	ingine	erin	g Prog	gram													
	The chemical engineering program Aims								L	evel A	A Gen	eral C	ompe	tenci	es										Lev	el B S	pecia	lized	Com	peten	cies			Spe	el C Hi ecializ ipeter	zed
		A1.1	A1.2	A1.3	A2.1	A2.2	A2.3	A3.1	A3.2	A3.3	A3.4	A4.1	A4.2	A5.1	A6.1	A7.1	A8.1	A8.2	A9.1	A9.2	A10.1	A10.2	B1.1	B1.2	B1.3	B1.4	B1.5	B2.1	B2.2	B3.1	B3.2	B4.1	B4.2	C1	C2	C 3
	1. Apply knowledge and Advanced technical skills in chemical engineering																																			
	Utilize and manage resources creatively through effective analysis and interpretation skill.																																			
	3. Recognize the potential and applicability of computer-based methods in chemical engineering design.																																			
Program	4. Address the issues of process dynamics and control in plant operation.																																			
	5. Plan and execute research work, evaluate outcomes and draw conclusions.																																			
	6. Identify and control the impact that chemical engineering has on society from an environmental, economic, social, and cultural point of view.																																			

Matrix 8 Mapping of Attributes of Chemical Engineer and the program LOs (matrix)

																	L	Os o	of Che	mica	l Eng	ineer	ing Pı	rograi	m													
The attributes of chemical engineer										Le	vel A	\ Gen	eral (Comp	eten	cies											Lev	vel B	Specia	alized	d Con	npete	encies			Sı	vel C H peciali npeter (ARS)	zed ncies
	A1.1	A1.2	A1.3	A	2.1	A2.2	A2.3	A3.	1 A3	3.2	A3.3	A3.4	A4.1	A4.2	A5.	1 A6	5.1 A	7.1	A8.1	A8.2	A9.1	A9.2	A10.1	A10.2	B1.1	B1.2	B1.3	B1.4	B1.5	B2.1	B2.2	B3.1	1 B3.2	B4.1	B4.2	C 1	C 2	C 3
Master a wide spectrum of engineering knowledge and specialized skills and can apply acquired knowledge using theories and abstract thinking in real life situations																																						
2. Apply analytic critical and systemic thinking to identify, diagnose and solve engineering problems with a wide range of complexity and variation																																						
3. Behave professionally and adhere to engineering ethics and standards																																						
Work in and lead a heterogeneous team of professionals from different engineering specialties and assume responsibility for own and team performance																																						
5. Recognize his/her role in promoting the engineering field and contribute in the development of the profession and the community																																						
6. Value the importance of the environment, both physical and natural, and work to promote sustainability principles																																						
7. Use techniques, skills and modern engineering tools necessary for engineering practice																																						
8. Assume full responsibility for own learning and self-development, engage in lifelong learning and demonstrate the capacity to engage in post- graduate and research studies																																						
Communicate effectively using different modes, tools and languages with various audiences; to deal with academic/professional challenges in a critical and creative manner																																						
10. Demonstrate leadership qualities, business administration and entrepreneurial skills																																						

Matrix 9 Mapping of Teaching and learning methods and the program LOs (matrix)

Matrix 9 Mapping of	<u> ea</u>	CIIII	ıg a	nu	icai	11111	ı <u>g</u> II	ielli	ious	all	u III	e hi	ugi	aiii	LU) S (1	шаі	LIX)	<u>. </u>																
															LOs	of Cl	nemic	al Eng	gineer	ing P	rogra	am													
teaching and learning methods								L	evel A	Gene	ral Co	mpet	encie	s										Le	vel B	Speci	alize	d Com	ıpetei	ıcies			Sp	el C Hi eciali ipetei	zed
	A1.1	A1.2	A1.3	A2.1	A2.2	A2.3	A3.1	A3.2	A3.3	A3.4	A4.1	A4.2	A5.1	A6.1	A7.1	A8.1	A8.2	A9.1	A9.2	A10.1	A10.2	B1.1	B1.2	B1.3	B1.4	B1.5	B2.1	B2.2	B3.1	B3.2	B4.1	B4.2	C1	C2	СЗ
Lectures / online lecture																																			
Presentations and Movies																																			
Discussions																																			
Tutorials																																			
Practical and Laboratory experiments																																			
Problem solving																																			
Projects																																			
Self-learning																																			
Site visits /simulation &modeling																																			
Researches and Reports																																			
Cooperative work																																			

Matrix 10 Mapping of Assessment methods and the program LOs (matrix)

X 10 Mapping of F	I					-	<u> </u>		, p.	<u> </u>			J (22	1441																					
														1	LOs o	f Cher	nical	Engin	eerin	g Pro	gram														\neg
Assesssement methods								ı	evel	A Gen	eral (ompe	tencie	es										Lev	el B S	pecia	lized	Com	peten	icies			Leve Spe Com	cializ	zed
	A1.1	A1.2	A1.3	A2.1	A2.2	A2.3	A3.1	A3.2	A3.3	A3.4	A4.1	A4.2	A5.1	A6.1	A7.1	A8.1	A8.2	A9.1	A9.2	A10.1	A10.2	B1.1	B1.2	B1.3	B1.4	B1.5	B2.1	B2.2	B3.1	B3.2	B4.1	B4.2	C1	C 2	С3
Written exam																																			
Oral Exam																																			
Mid Term Exam(face to face/online)																																			
Attendance																																			
Project																																			
sheet																																			
Report																																			
Laboratory Exam																																			
Quiz																																			
Online Quiz																																			